帳號:guest(18.117.172.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韋沛岑
作者(外文):Wei, Pei-Tsen
論文名稱(中文):以Jeffamine聚合物包覆之奈米鈀粒子合成及其於氟系Rogers介電材料上無電鍍之應用
論文名稱(外文):Synthesis of Jeffamine-capped Pd Nanoparticles and its Application in Electroless Plating on Polytetrafluoroethylene Rogers Dielectric Substrates
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):王金勝
何政恩
陳志銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032517
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:122
中文關鍵詞:無電鍍沉積奈米粒子鈀觸媒表面改質金屬化
外文關鍵詞:Electroless DepositionNanoparticlesPalladium CatalystSurface ModificationMetallization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
無電鍍沉積(Electroless Plating)是一項常被應用於印刷電路板(Printed Circuit Board, PCB)產業的技術,此技術具有鍍層較緻密且不需額外提供電流等優勢。在進行無電鍍沉積前,需要先將基板進行活化,鈀觸媒經常被用作此流程必須的活化劑。本研究旨在開發一種具自吸附性質之新型奈米鈀觸媒,並將其作為在有機基材上無電鍍銅之催化劑。
研究中第一部分以聚乙烯醇(Polyvinyl Alcohol, PVA)作為奈米鈀的保護劑,使PVA-Pd奈米粒子能穩定分散在懸浮液中,並以混摻的方式將常用作改質劑之高分子聚乙烯亞胺(Polyethylenimine, PEI)加入PVA-Pd中,使奈米粒子PEI-PVA-Pd能同時具有改質及活化兩種特性。第二部分則由於PEI-PVA-Pd的不穩定性,進一步引入以Jeffamine包覆的奈米鈀觸媒JA-Pd,使觸媒除了有自吸附性質外,還能具有高穩定性以延長觸媒的使用壽命。另外,本研究以氟系高頻基板(Polytetraflouroethylene, PTFE)作為分析所使用的主要材料,後續測試以液晶高分子(Liquid Crystal Polymer, LCP)確認在其他有機材料上應用的可行性。
本研究透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)以及奈米粒經分析儀(Dynamic Light Scattering, DLS)確認奈米粒子的尺寸大小和粒徑分布,並以感應耦合電漿原子發射光譜儀(Inductively Couple Plasma Optical Emission Spectroscopy, ICP-OES)與電化學分析儀(Autolab)比較觸媒之催化活性。接著透過X射線光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS)確認奈米鈀觸媒的結構,並將觸媒吸附於PTFE基板上後,以水滴接觸角(Water Contact Angle, WCA)以及XPS表面分析觀察吸附前後的表面變化和確認吸附機制。最後以萬能拉力機(Universal Testing Machine)以及SEM分析無電鍍銅層和基板之間的附著力與撕裂面。
Electroless plating (ELP) is a technique widely applied in the printed circuit board (PCB) industry. Palladium catalysts are often used as the activators process in ELP process. This research aims to develop a novel self-adhesive nano palladium catalyst and utilize it as the activator for ELP on organic substrates.
In the first part of this study, polyvinyl alcohol (PVA) is used as a capping agent for palladium nanoparticles. Polyethylenimine (PEI), commonly used as a modifier, is incorporated into PVA-Pd through blending. The novel Pd nanoparticle PEI-PVA-Pd obtains both modification and activation properties. In the second part, due to the instability of PEI-PVA-Pd, another nano-palladium catalyst capped with Jeffamine (JA-Pd) is synthesized. This catalyst not only exhibits self-adsorbing properties but also offers high stability. The primary material used in this study is polytetrafluoroethylene (PTFE), with additional testing on liquid crystal polymer (LCP) to confirm the feasibility of application on other organic materials.
The study employs transmission electron microscopy (TEM) and dynamic light scattering (DLS) to determine the size and size distribution of the nanoparticles. The activity of the catalysts is compared using inductively coupled plasma optical emission spectroscopy (ICP-OES) and induction time analysis. Subsequently, the catalyst structure was confirmed using X-ray photoelectron spectroscopy (XPS). The catalysts are then adsorbed onto the PTFE substrate, the surface changes are observed using Water Contact Angle (WCA) measurements and XPS surface analysis to confirm the adsorption mechanism. Finally, the adhesion strength and the fracture surface between the electroless copper layer and the substrate were analyzed using a universal testing machine and Scanning Electron Microscopy (SEM).
摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖目錄 viii
表目錄 xiv
第 一 章 緒論 1
第 二 章 文獻回顧 4
2-1 金屬化製程技術 4
2-2 無電鍍沉積法 4
2-2-1 無電鍍沉積法基本原理 4
2-2-2 無電鍍銅液組成與特性 5
2-2-3 無電鍍銅液反應及觸媒催化機制 7
2-3 鈀觸媒種類及應用 9
2-3-1 錫鈀膠體觸媒(Sn/Pd Colloid) 10
2-3-2 離子鈀觸媒(Pd-ion) 10
2-3-3 奈米鈀觸媒(Pd Nanoparticles) 11
2-4 金屬奈米粒子 11
2-4-1 奈米粒子分散機制 11
2-4-2 奈米粒子保護劑種類 13
2-5 表面改質 14
2-5-1 矽烷化合物改質及其於無電鍍沉積上之應用 15
2-5-2 聚乙烯亞胺改質及其於無電鍍沉積上之應用 17
2-5-3 其他含氮官能基聚合物表面改質其於無電鍍沉積上之應用 20
2-6 Jeffamine聚醚胺 23
2-6-1 Jeffamine聚醚胺簡介 23
2-6-2 Jeffamine聚醚胺種類 24
2-6-3 Jeffamine聚醚胺於表面改質上之應用 25
2-7 奈米鈀搭配表面改質於無電鍍沉積上之應用 26
2-7-1 以ETAS表面改質搭配奈米鈀觸媒PVA-Pd活化 27
2-7-2 以ETAS混摻PVA-Pd之自吸附奈米鈀觸媒ETAS-PVA-Pd 30
2-7-3 以PEI表面改質搭配奈米鈀觸媒PVA-Pd活化 33
2-7-4 以PEI包覆之自吸附奈米鈀觸媒PEI-Pd 35
2-8 印刷電路板之有機基材 37
2-8-1 氟系高頻基板金屬化應用 37
2-8-2 液晶高分子基板金屬化應用 41
2-9 研究目的與動機 46
第 三 章 實驗 48
3-1 實驗藥品 48
3-2 實驗材料 48
3-2-1 氟系高頻基板簡介 48
3-2-2 RO3000系列簡介 50
3-2-3 液晶高分子簡介 50
3-3 設備與儀器 51
3-3-1 奈米粒徑分析儀 (Dynamic Light Scattering, DLS) 52
3-3-2 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS) 52
3-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 53
3-3-4 萬能附著力機 (Universal Testing Machine) 55
3-3-5 接觸角量測儀 (Contact Angle) 56
3-3-6 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 57
3-3-7 感應耦合電漿原子發射光譜儀 (Inductively Couple Plasma Optical Emission Spectrometry, ICP-OES) 58
3-3-8 電化學分析儀 59
3-3-9 表面輪廓量測儀 (Alpha Step) 61
3-3-10 紫外光-可見光光譜儀 (Ultraviolet–visible Spectrometer, UV-Vis) 63
3-4 實驗流程 64
3-4-1 奈米鈀觸媒PVA-Pd合成 64
3-4-2 奈米鈀觸媒PEI-PVA-Pd合成 65
3-4-3 奈米鈀觸媒JA-Pd合成 66
3-4-4 無電鍍藥水配置以及無電鍍銅沉積 67
3-4-5 電鍍銅藥水配製 68
第 四 章 結果與討論 70
4-1 PEI-PVA-Pd奈米鈀觸媒分析 70
4-1-1 PEI-PVA-Pd粒徑分布及分析 70
4-1-2 PEI-PVA-Pd活性分析 72
4-1-3 PEI-PVA-Pd自吸附於RO3003基板上分析 76
4-1-4 RO3003上無電鍍銅層沉積表面形貌 79
4-1-5 RO3003上無電鍍銅層附著力分析 80
4-1-6 PEI-PVA-Pd觸媒穩定性分析 87
4-2 JA-Pd奈米鈀觸媒分析 89
4-2-1 不同合成比例之JA-Pd比較 89
4-2-2 JA-Pd之粒徑與還原完成度分析 92
4-2-3 JA-Pd、PEI-PVA-Pd及Sn/Pd活性分析 94
4-2-4 JA-Pd包覆穩定機制 95
4-2-5 JA-Pd自吸附於RO3003基板上分析 100
4-2-6 以JA-Pd活化之無電鍍層附著力分析 103
4-2-7 JA-Pd觸媒穩定性分析 107
4-2-8 PEI-PVA-Pd及JA-Pd於LCP基材無電鍍銅附著力結果 110
第 五 章 結論 112
第 六 章 未來展望 114
參考文獻 115
[1] 遠見雜誌, 世界亮點產業 少不了台灣. 2021.
[2] Djokić, S.S. and P.L. Cavallotti, "Electroless deposition: theory and applications." Electrodeposition: Theory and Practice, 2010: p. 251-289.
[3] Sun, R.D., et al., "Adhesion of Electroless Deposited Cu on ZnO‐Coated Glass Substrates: The Effect of the ZnO Surface Morphology." Journal of the Electrochemical Society, 1999. 146(6): p. 2117.
[4] Wurtz, A., "On copper hydride (Translated from French)." Cr Hebd Acad Sci, 1844. 18: p. 702-704.
[5] Brenner, A. and G.E. Riddell, "Nickel plating on steel by chemical reduction." Plating and surface finishing, 1998. 85(8): p. 54-55.
[6] De Minjer, C. and P. vd Boom, "The nucleation with SnCl2‐PdCl2 solutions of glass before electroless plating." Journal of The Electrochemical Society, 1973. 120(12): p. 1644.
[7] Shu, J., B. Grandjean, and S. Kaliaguine, "Effect of Cu (OH) 2 on electroless copper plating." Industrial & engineering chemistry research, 1997. 36(5): p. 1632-1636.
[8] Jayalakshmi, S., P. Venkatesh, and P.B. Ramesh, "Recent advances in electroless copper deposition-A review." International Journal of Advanced Research in Engineering and Applied Sciences, 2016. 5(8): p. 1-18.
[9] Changsup, R., "Microstructure and reliability of copper interconnects." IEEE transaction on electron devices, 1999. 46: p. 6.
[10] Hung, A., "Electroless copper deposition with hypophosphite as reducing agent." Plating and surface finishing, 1988. 75(1): p. 62.
[11] Ohno, I., O. Wakabayashi, and S. Haruyama, "Anodic oxidation of reductants in electroless plating." Journal of the electrochemical society, 1985. 132(10): p. 2323.
[12] Barker, B., "Electroless deposition of metals." Surface technology, 1981. 12(1): p. 77-88.
[13] Juzeliunas, E., H.W. Pickering, and K.G. Weil, "Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes." Journal of the Electrochemical Society, 2000. 147(3): p. 1088.
[14] Oita, M., M. Matsuoka, and C. Iwakura, "Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl." Electrochimica Acta, 1997. 42(9): p. 1435-1440.
[15] Shacham-Diamand, Y. and V.M. Dubin, "Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization." Microelectronic Engineering, 1997. 33(1-4): p. 47-58.
[16] Zheng, W., "Fundamentals of Electrochemical Deposition." Corrosion, 2003. 59(1): p. 88.
[17] Van Den Meerakker, J., "On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces." Journal of Applied Electrochemistry, 1981. 11(3): p. 387-393.
[18] Van den Meerakker, J. and J. De Bakker, "On the mechanism of electroless plating. Part 3. Electroless copper alloys." Journal of applied electrochemistry, 1990. 20: p. 85-90.
[19] Kita, H., "Periodic variation of exchange current density of hydrogen electrode reaction with atomic number and reaction mechanism." Journal of the Electrochemical Society, 1966. 113(11): p. 1095.
[20] Saldan, I., et al., "Chemical synthesis and application of palladium nanoparticles." Journal of materials science, 2015. 50: p. 2337-2354.
[21] Chen, L.-J., C.-C. Wan, and Y.-Y. Wang, "Chemical preparation of Pd nanoparticles in room temperature ethylene glycol system and its application to electroless copper deposition." Journal of colloid and interface science, 2006. 297(1): p. 143-150.
[22] Kim, S.-W., et al., "Synthesis of monodisperse palladium nanoparticles." Nano Letters, 2003. 3(9): p. 1289-1291.
[23] Rahim, E.H., et al., "Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd (0) nanoparticles." Nano Letters, 2001. 1(9): p. 499-501.
[24] Faure, B., et al., "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens." Science and technology of advanced materials, 2013. 14(2): p. 023001.
[25] Yang, C.-C., Y.-Y. Wang, and C.-C. Wan, "Synthesis and characterization of PVP stabilized Ag/Pd nanoparticles and its potential as an activator for electroless copper deposition." Journal of The Electrochemical Society, 2005. 152(2): p. C96.
[26] Hou, Z., et al., "Biphasic aerobic oxidation of alcohols catalyzed by poly (ethylene glycol)‐stabilized palladium nanoparticles in supercritical carbon dioxide." Angewandte Chemie International Edition, 2005. 44(9): p. 1346-1349.
[27] Cookson, J., "The preparation of palladium nanoparticles." Platinum Metals Review, 2012. 56(2): p. 83-98.
[28] Campisi, S., et al., "Untangling the role of the capping agent in nanocatalysis: recent advances and perspectives." Catalysts, 2016. 6(12): p. 185.
[29] Tesoro, G. and Y. Wu, "Silane coupling agents: the role of the organofunctional group." Journal of adhesion science and technology, 1991. 5(10): p. 771-784.
[30] Gentle, T., et al., "Organofunctional silanes as adhesion promoters: direct characterization of the polymer/silane interphase." Journal of adhesion science and technology, 1992. 6(2): p. 307-316.
[31] Bledzki, A. and J. Gassan, "Composites reinforced with cellulose based fibres." Progress in polymer science, 1999. 24(2): p. 221-274.
[32] Herzer, N., S. Hoeppener, and U.S. Schubert, "Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates." Chemical Communications, 2010. 46(31): p. 5634-5652.
[33] Xu, L., et al., "Surface-bound nanoparticles for initiating metal deposition." Thin Solid Films, 2003. 434(1-2): p. 121-125.
[34] Su, W., et al., "Preparation and characterization of copper patterns on polyethylenimine-modified flexible substrates." Reactive and Functional Polymers, 2011. 71(9): p. 943-947.
[35] Yu, Z., E. Kang, and K. Neoh, "Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers." Polymer, 2002. 43(15): p. 4137-4146.
[36] Hozumi, A., et al., "Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a polyimide substrate covered with an oxide nanoskin." Langmuir, 2005. 21(18): p. 8234-8242.
[37] Shi, X., et al., "Sorbents for the direct capture of CO2 from ambient air." Angewandte Chemie International Edition, 2020. 59(18): p. 6984-7006.
[38] Chen, Z., et al., "Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications." Journal of materials chemistry B, 2020. 8(15): p. 2951-2973.
[39] Lv, Y., et al., "Co-deposition kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface." Langmuir, 2018. 34(44): p. 13123-13131.
[40] Li, C., et al., "The effect of the gene carrier material polyethyleneimine on the structure and function of human red blood cells in vitro." Journal of Materials Chemistry B, 2013. 1(14): p. 1885-1893.
[41] Zhong, D., et al., "Effects of the gene carrier polyethyleneimines on structure and function of blood components." Biomaterials, 2013. 34(1): p. 294-305.
[42] He, Y., et al., "Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery." Biomaterials, 2013. 34(4): p. 1235-1245.
[43] Schaubroeck, D., et al., "Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition." Applied surface science, 2014. 305: p. 321-329.
[44] Burton, B., et al., "Epoxy formulations using Jeffamine® polyetheramines." Huntsman Corp, 2005. 1(1).
[45] Froimowicz, P., et al., "Effect of the molecular structure on the reactivity in a family of tetra-amine compounds derived from Jeffamines." Macromolecular Research, 2012. 20: p. 800-809.
[46] Soares, B.G., et al., "New Epoxy/Jeffamine networks modified with ionic liquids." Journal of Applied Polymer Science, 2014. 131(3).
[47] Bar, H. and H. Bianco-Peled, "Modification of shellac coating using Jeffamine® for enhanced mechanical properties and stability." Progress in Organic Coatings, 2020. 141: p. 105559.
[48] Hailat, M., H. Xiao, and K. Frisch, "Studies on the Modification of Thermoplastic Polyolefins (TPOs)—Part I. Effect of Various Modifiers on the Adhesion of a Two-Component (2K) Polyurethane Coating to the Modified TPOs." Journal of Elastomers & Plastics, 2000. 32(3): p. 194-210.
[49] Lo, T.-Y., et al., "Surface characteristics and biofunctionality of a novel high-performance, hydrophilic Jeffamine-added fluoro-containing polyimide for biomedical applications." Journal of Polymer Research, 2015. 22: p. 1-12.
[50] Castan, L., et al., "Comparative study of cytotoxicity and genotoxicity of commercial Jeffamines® and polyethylenimine in CHO‐K1 cells." Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018. 106(2): p. 742-750.
[51] Öztürk, K., et al., "Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers." Journal of microencapsulation, 2014. 31(2): p. 127-136.
[52] Kao, Y.-H. and T.-C. Wei. Novel active nano-palladium catalyst for adhesive electroless plating of Ni-P layer on glass interposer. in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2017. IEEE.
[53] Hsu, C.-W., et al. Adhesive nickel-phosphorous electroless plating on silanized silicon wafer catalyzed by reactive palladium nanoparticles. in 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2015. IEEE.
[54] Wei, T.-C., et al., "Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer." Electrochemistry Communications, 2015. 54: p. 6-9.
[55] Meis, N., et al., "Extreme wet adhesion of a novel epoxy-amine coating on aluminum alloy 2024-T3." Progress in Organic Coatings, 2014. 77(1): p. 176-183.
[56] Guo, J.-Y. and T.-C. Wei. A Novel Wet Metallization on Photo-Imageable Dielectric Material with High T-Peel Adhesion Using Pd Nanoparticle Catalyst and Micro Surface Roughening. in 2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2020. IEEE.
[57] 吳奕蒼, 合成聚乙烯亞胺包覆奈米鈀粒子及其應用於液晶高分子基材上無電鍍之研究. 2023.
[58] Yang, G.H., E. Kang, and K. Neoh, "Electroless deposition of copper and nickel on poly (tetrafluoroethylene) films modified by single and double surface graft copolymerization." Applied surface science, 2001. 178(1-4): p. 165-177.
[59] Chen, Y., et al., "Electroless plating of copper on polytetrafluoroethylene films modified by surface-initiated free radical polymerization of 4-vinylpyridine." Surface Review and Letters, 2007. 14(02): p. 241-253.
[60] Ge, J., M. Turunen, and J.K. Kivilahti, "Surface modification of a liquid‐crystalline polymer for copper metallization." Journal of Polymer Science Part B: Polymer Physics, 2003. 41(6): p. 623-636.
[61] Huangfu, M.-G., et al., "Preparation and characterization of electrospun fluoro-containing poly (imide-benzoxazole) nano-fibrous membranes with low dielectric constants and high thermal stability." Nanomaterials, 2021. 11(2): p. 537.
[62] 杨邦朝, et al., "高频印制电路基板材料." 电子与封装, 2001(2): p. 11-16.
[63] corporation, R. "RO3000 Laminate Datasheet."
[64] Balde, J.W., "" Packaging at the Turning Point-Technology and Management Issues"-A Keynote Presentation for IMAPS Europe 2001." Advancing Microelectronics, 2001. 28(3): p. 22-24.
[65] Dow, W.-P., H.-S. Huang, and Z. Lin, "Interactions between brightener and chloride ions on copper electroplating for laser-drilled via-hole filling." Electrochemical and solid-state letters, 2003. 6(9): p. C134.
[66] Bhattacharjee, S., "DLS and zeta potential–what they are and what they are not?" Journal of controlled release, 2016. 235: p. 337-351.
[67] Peng, C., et al., "Study of the adsorptive behavior of Pd/PVP nanoparticles and its interaction with conditioner in electroless copper deposition." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 308(1-3): p. 93-99.
[68] Lee, C.-L., C.-C. Wan, and Y.-Y. Wang, "Pd nanoparticles as a new activator for electroless copper deposition." Journal of The Electrochemical Society, 2003. 150(3): p. C125.
[69] Lin, S., et al., "Selective recovery of Pd (II) from extremely acidic solution using ion-imprinted chitosan fiber: adsorption performance and mechanisms." Journal of hazardous materials, 2015. 299: p. 10-17.
[70] Jeyabharathi, C., et al., "Carbon-supported palladium–polypyrrole nanocomposite for oxygen reduction and its tolerance to methanol." Journal of The Electrochemical Society, 2010. 157(11): p. B1740.

(此全文20260806後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *