帳號:guest(3.141.12.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡紹宇
作者(外文):Chien, Shao-Yu
論文名稱(中文):以雙官能基米氏酸衍生物與聚癸二酸甘油酯製備生物可降解類玻璃聚酯及其性質研究
論文名稱(外文):Preparation and characterization of biodegradable polyester vitrimers with bifunctional Meldrum’s acid derivatives and poly(glycerol sebacate)
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):王潔
陳俊太
口試委員(外文):Wang, Jane
Che, Jiun-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032511
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:112
中文關鍵詞:類玻璃高分子共價適應網絡生物降解拓撲結構異構化米氏酸聚癸二酸甘油酯
外文關鍵詞:vitrimercovalent adaptable networksbiodegradationtopography isomerizationMeldrum's acidpoly(glycerol sebacate)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究以多官能基的米氏酸衍生物製備生物可降解的類玻璃聚酯,米氏酸 (Meldrum’s acid, MA) 在高溫下熱裂解產生烯酮 (ketene) 官能基,與羥基反應,生成動態共價酯鍵,製備類玻璃聚酯。
第一部分透過有機合成的方式,成功合成雙官能基的米氏酸衍生物MABMA。
第二部分以傳統逐步聚合反應,以癸二酸(sebacic acid)與甘油(glycerol)作為原料,進行A2+B3系統的縮合聚合反應,成功製備聚癸二酸甘油酯 (poly(glycerol sebacate), PGS)。
第三部分因羥基能催化米氏酸開環,在較低溫的環境產生烯酮官能基,以帶有羥基的聚癸二酸甘油酯過量進料的方式,預期製備動態可逆的酯鍵,在高分子網絡具有羥基可催化酯交換。將所合成之MABMA,作為PGS的交聯劑,改變米氏酸對羥基當量比例,改變羥基在高分子網絡中的含量,製備兩種交聯聚酯CR-MABMA-PGS-1.5、CR-MABMA-PGS-2,並證明其具有類玻璃聚酯的酯交換特性、可回收性、二次加工特性與生物可降解性。
In this study, biodegradable polyester vitrimers were prepared by multifunctional Meldrum’s acid derivatives. The ketene generated by thermal pyrolysis of Meldrum’s acid reacted with hydroxyl group to form dynamic covalent ester bonds in order to prepare polyester vitrimers.
The first part, a bifunctional Meldrum’s acid derivative MABMA was successfully synthesized through organic synthesis.
In the second part, it involved a traditional step-growth polymerization reaction. Sebacic acid and glycerol were employed as raw materials to conduct the A2+B3 type condensation polymerization reaction. Poly(glycerol sebacate) (PGS) was successfully prepared.
In the third part, the Meldrum’s acid can generate ketene functional groups at lower temperature because the hydroxyl group can catalyze the ring-opening of Meldrum’s acid. By the method of excessive feeding of PGS, the dynamic covalent ester bonds were prepared, and the excess hydroxyl groups can catalyze transesterification in the polymer network. The synthesized MABMA were utilized as crosslinking agent of PGS. By changing the ratio of Meldrum’s acid to hydroxyl group equivalents to change the content of hydroxyl groups in the polymer network. It is planned to prepare a variety of crosslinked polyesters, and prove that they have transesterification properties, self-healing, and recyclability and biodegradability.
摘要-----i
Abstract-----ii
圖目錄-----vii
表目錄-----xiv
第一章 緒論-----1
1-1 前言-----1
1-2 熱固性高分子-----3
1-3 類玻璃高分子(Vitrimers)-----4
1-4 研究動機-----8
第二章 文獻回顧-----9
2-1 動態共價鍵種類-----9
2-2 類玻璃高分子合成-----13
2-2-1 類玻璃聚酯合成-小分子聚合-----15
2-2-2 類玻璃聚酯合成-小分子含有動態鍵結-----16
2-2-3 類玻璃聚酯合成-交聯熱塑性高分子-----17
2-3 動態酯鍵合成-----18
2-4 米氏酸衍生物合成聚酯類-----19
2-5 米氏酸衍生物合成類玻璃聚酯-----21
2-6 生物可降解高分子-----23
2-7 生物可降解類玻璃高分子合成-----24
2-8 研究方法-----28
第三章 實驗方法-----29
3-1 實驗藥品-----29
3-2 實驗儀器-----33
3-3 實驗步驟-----36
3-3-1 具雙官能基的米氏酸芳香族單體合成(MABMA)-----36
3-3-2 聚癸二酸甘油酯合成(PGS)-----37
3-3-3 緻密交聯聚酯高分子CR-MABMA-PGS-1.5製備-----37
3-3-4 緻密交聯聚酯高分子CR-MABMA-PGS-2製備-----38
3-3-5 緻密交聯聚酯高分子(CR-MABMA-PGS-1.5, CR-MABMA-PGS-2)之物理回收條件-----40
3-3-6 緻密交聯聚酯高分子(CR-MABMA-PGS-1.5, CR-MABMA-PGS-2)之生物降解能力測試-----41
第四章 結果與討論-----42
4-1 具雙官能基的米氏酸芳香族單體-----42
4-1-1 具雙官能基的米氏酸芳香族(MABMA)單體結構鑑定-----42
4-1-2 具雙官能基的米氏酸芳香族單體熱性質分析-----45
4-2 聚癸二酸甘油酯-----47
4-2-1聚癸二酸甘油酯(PGS)預聚物結構鑑定-----47
4-3 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯-----51
4-3-1 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯(CR-MABMA-PGS-1.5, CR-MABMA-PGS-2)之合成與結構鑑定-----51
4-3-2 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之熱性質-----55
4-3-3 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之機械性質-----58
4-3-4 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之凝膠比例與溶脹率-----62
4-3-5 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之頻率掃描測試-----64
4-3-6 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之接觸角測試-----65
4-3-7 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之吸水測試-----66
4-4 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之回收能力-----67
4-4-1 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之應力鬆弛-----67
4-4-2 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之蠕變測試-----72
4-4-2 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之黏度測試-----74
4-4-3 回收交聯聚酯之回收條件與結構鑑定-----75
4-4-4 回收交聯聚酯之熱性質-----77
4-4-5 回收交聯聚酯之機械性質-----79
4-4-6 回收交聯聚酯之凝膠比例與溶脹率-----87
4-4-7 回收交聯聚酯之應力鬆弛-----89
4-4-8 回收交聯聚酯之截面平整度-----92
4-5 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之熱響應能力-----95
4-6 交聯芳香族雙米氏酸-聚癸二酸甘油酯聚酯之生物降解能力-----101
第五章 結論-----103
第六章 參考文獻-----105
1. Denissen, W.; Winne J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7 (1), 30-38.
2. Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N. Photoinduced plasticity in cross-linked polymers. Science, 2005, 308 (5728), 1615-1617.
3. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science, 2011, 334 (6058), 965-968.
4. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018, 80, 39-93.
5. Van Zee, N. J.; Nicolaÿ, R. Vitrimers: Permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science, 2020, 104, 101233.
6. Cuminet, F.; Caillol, S.; Dantras, É.; Leclerc, E.; Ladmiral, V. Neighboring group participation and internal catalysis effects on exchangeable covalent bonds: application to the thriving field of vitrimer chemistry. Macromolecules, 2021, 54 (9), 3927-3961.
7. Debnath, S.; Kaushal, S.; Ojha, U. Catalyst-free partially bio-based polyester vitrimers. ACS Applied Polymer Materials, 2020, 2 (2), 1006-1013.
8. Ciaccia, M.; Stefano, D. S. Mechanisms of imine exchange reactions in organic solvents. Organic & Biomolecular Chemistry, 2015, 13 (3), 646-654.
9. Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. Journal of the American Chemical Society, 2009, 131 (29), 10003-10008.
10. Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. Mechanism of AlIII-catalyzed transamidation of unactivated secondary carboxamides. Journal of the American Chemical Society, 2006, 128 (15), 5177-5183.
11. Osthoff, R. C.; Bueche, A. M.; Grubb, W. T. Chemical stress-relaxation of polydimethylsiloxane elastomers. Journal of the American Chemical Society, 1954, 76 (18), 4659-4663.
12. Kantor, S. W.; Grubb, W. T.; Osthoff, R. C. The mechanism of the acid-and base-catalyzed equilibration of siloxanes. Journal of the American Chemical Society, 1954, 76 (20), 5190-5197.
13. Wu, J.; Gao, L.; Guo, Z.; Zhang, H.; Zhang, B.; Hu, J.; Li, M. H. Natural glycyrrhizic acid: improving stress relaxation rate and glass transition temperature simultaneously in epoxy vitrimers. Green Chemistry, 2021, 23(15), 5647-5655.
14. Zou, W.; Jin, B.; Wu, Y.; Song, H.; Luo, Y.; Huang, F.; Xie, T. Light-triggered topological programmability in a dynamic covalent polymer network. Science Advances, 2020, 6(13), eaaz2362.
15. Hayashi, M.; Yano, R.; Takasu, A. Synthesis of amorphous low T g polyesters with multiple COOH side groups and their utilization for elastomeric vitrimers based on post-polymerization cross-linking. Polymer Chemistry, 2019, 10(16), 2047-2056.
16. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Hawker, C. J. A facile route to ketene-functionalized polymers for general materials applications. Nature chemistry, 2010, 2(3), 207.
17. Coulembier, O.; Degée, P.; Hedrick, J. L.; Dubois, P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid) derivatives. Progress in Polymer Science, 2006, 31(8), 723-747.
18. Ozturk, G. I.; Pasquale, A. J.; Long, T. E. Melt synthesis and characterization of aliphatic low-Tg polyesters as pressure sensitive adhesives. The Journal of Adhesion, 2010, 86(4), 395-408.
19. Wolffs, M.; Kade, M. J.; Hawker, C. J. An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011, 47 (38), 10572-10574.
20. Lin, L. K.; Wang, J.; Liu, Y. L. Effective synthesis route for linear and cross-linked biodegradable polyesters using aliphatic Meldrum’s Acid derivatives as monomers. ACS omega, 2018, 3 (4), 4641-4646.
21. Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer. Macromolecules, 2018, 51(17), 6789-6799.
22. Kaiser, S.; Wurzer, S.; Pilz, G.; Kern, W.; Schlögl, S. Stress relaxation and thermally adaptable properties in vitrimer-like elastomers from HXNBR rubber with covalent bonds. Soft Matter, 2019, 15(30), 6062-6072.
23. Cunha, R. H.; Nele, M.; Dias, M. L. Reaction and thermal behavior of vitrimer‐like polyhydroxy esters based on polyethylene glycol diglycidyl ether. Journal of Applied Polymer Science, 2020, 137(43), 49329.
24. Hung, D. Y.; Liu, Y. L. Meldrum's acid mediated ketene chemistry in the formation of ester bonds for the synthesis of vitrimers with high glass transition temperatures. Polymer Chemistry, 2023, 14(12), 1339-1349.
25. von Vacano, B.; Mangold, H.; Vandermeulen, G. W.; Battagliarin, G.; Hofmann, M.; Bean, J.; Künkel, A. Sustainable Design of Structural and Functional Polymers for a Circular Economy. Angewandte Chemie International Edition, 2023, 62(12), e202210823.
26. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R. A tough biodegradable elastomer. Nature Biotechnology, 2002, 20 (6), 602-606.
27. Sun, Z. J.; Chen, C.; Sun, M. Z.; Ai, C. H.; Lu, X. L.; Zheng, Y. F.; Dong, D. L. The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, 2009, 30 (28), 5209-5214.
28. Boutry, C. M.; Nguyen, A.; Lawal, Q. O.; Chortos, A.; Rondeau‐Gagné, S.; Bao, Z. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Advanced Materials, 2015, 27 (43), 6954-6961.
29. Tong, H.; Chen, Y.; Weng, Y.; Zhang, S. Biodegradable-renewable vitrimer fabrication by epoxidized natural rubber and oxidized starch with robust ductility and elastic recovery. ACS Sustainable Chemistry & Engineering, 2022, 10(24), 7942-7953.
30. Haida, P., Chirachanchai, S., Abetz, V. Starch-Reinforced Vinylogous Urethane Vitrimer Composites: An Approach to Biobased, Reprocessable, and Biodegradable Materials. ACS Sustainable Chemistry & Engineering, 2023, 11(22), 8350-8361.
31. Cywar, R. M.; Ling, C.; Clarke, R. W.; Kim, D. H.; Kneucker, C. M.; Salvachúa, D.; Beckham, G. T. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. Science Advances, 2023, 9(47), eadi1735.
32. Hsieh, Y. K.; Chen, S. C.; Huang, W. L.; Hsu, K. P.; Gorday, K. A. V.; Wang, T.; Wang, J. Direct micromachining of microfluidic channels on biodegradable materials using laser ablation. Polymers, 2017, 9(7), 242.
33. Chen, J. Y.; Hwang, J. V.; Ao-Ieong, W. S.; Lin, Y. C.; Hsieh, Y. K.; Cheng, Y. L.; Wang, J. Study of physical and degradation properties of 3D-printed biodegradable, photocurable copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers, 2018, 10(11), 1263.
34. Hsieh, Y. K., Chang, C. T., Jen, I. H., Pu, F. C., Shen, S. H., Wan, D., Wang, J. Use of gold nanoparticles to investigate the drug embedding and releasing performance in biodegradable poly (glycerol sebacate). ACS Applied Nano Materials, 2018, 1(9), 4474-4482.
35. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J. Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012, 3 (3), 766-771.
36. Lee, S. H.; Lee, K. W.; Gade, P. S.; Robertson, A. M.; Wang, Y. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. Journal of Biomaterials Science, Polymer Edition, 2018, 29 (7-9), 907-916.
37. Hagen, R.; Salmén, L.; Stenberg, B. Effects of the type of crosslink on viscoelastic properties of natural rubber. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(12), 1997-2006.
38. Nielsen, L. E. Cross-linking–effect on physical properties of polymers. Journal of Macromolecular Science, Part C, 1969, 3(1), 69-103.
39. Zhou, S.; Huang, K.; Xu, X.; Wang, B.; Zhang, W.; Su, Y.; Ma, S. Rigid-and-flexible, degradable, fully biobased thermosets from lignin and soybean oil: synthesis and properties. ACS Sustainable Chemistry & Engineering, 2023,11(8), 3466-3473.
40. Hung, D. Y.; Lee, J. J.; Liu, Y. L. An effective approach for the preparation of epoxy vitrimers by in situ formation of dynamic and permanent linkages in a one-pot curing reaction. Polymer Chemistry, 2023, 14(44), 5004-5013.
41. Lin-Gibson, S.; Walls, H. J.; Kennedy, S. B.; Welsh, E. R. Reaction kinetics and gel properties of blocked diisocyinate crosslinked chitosan hydrogels. Carbohydrate Polymers, 2003, 54(2), 193-199.
42. Liu, H.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Self‐healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromolecular Materials and Engineering, 2016, 301(6), 725-732.
43. Yoon, S.; Chen, B. Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly (glycerol sebacate) pre-polymer and gelatin. Polymer Chemistry, 2018, 9(27), 3727-3740.
44. Risley, B. B.; Ding, X.; Chen, Y.; Miller, P. G.; Wang, Y. Citrate crosslinked poly (glycerol sebacate) with tunable elastomeric properties. Macromolecular Bioscience, 2021, 21(2), 2000301.
45. Paik, D.; Lee, H.; Kim, H.; Choi, J. M. Thermodynamics of π–π Interactions of Benzene and Phenol in Water. International Journal of Molecular Sciences, 2022, 23(17), 9811.
46. Liu, W.: Schmidt, D. F.; Reynaud, E. Catalyst selection, creep, and stress relaxation in high-performance epoxy vitrimers. Industrial & Engineering Chemistry Research, 2017, 56(10), 2667-2672.
47. He, C.; Shi, S.; Wang, D.; Helms, B. A.; Russell, T. P. Poly (oxime–ester) vitrimers with catalyst-free bond exchange. Journal of the American Chemical Society, 2019, 141(35), 13753-13757.
48. El, Zaatari; Bassil, M.; Ishibashi, J. S.; Kalow, J. A. Cross-linker control of vitrimer flow. Polymer Chemistry, 2020, 11(33), 5339-5345.
49. Zhong, L.; Hao, Y.; Zhang, J.; Wei, F.; Li, T.; Miao, M.; Zhang, D. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules, 2022, 55(2), 595-607.
50. Berne, D.; Cuminet, F.; Lemouzy, S.; Joly-Duhamel, C.; Poli, R.; Caillol, S.; Ladmiral, V. Catalyst-free epoxy vitrimers based on transesterification internally activated by an α–CF3 group. Macromolecules, 2022, 55(5), 1669-1679.
51. Liu, T.; Zhao, B.; Zhang, J. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194, 122392.
52. Hao, C.; Liu, T.; Zhang, S.; Liu, W.; Shan, Y.; Zhang, J. Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules, 2020, 53(8), 3110-3118.
53. Ricarte, R. G.; Tournilhac, F.; Cloître, M.; Leibler, L. Linear viscoelasticity and flow of self-assembled vitrimers: the case of a polyethylene/dioxaborolane system. Macromolecules, 2020, 53(5), 1852-1866.
54. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 1(7), 789-792.
55. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. Journal of the American Chemical Society, 2012, 134(18), 7664-7667.
56. Fang, Z.; Shi, Y.; Mu, H.; Lu, R.; Wu, J.; Xie, T. 3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability. Nature Communications, 2023, 14(1), 1313.
57. Miao, W.; Zou, W.; Jin, B.; Ni, C.; Zheng, N.; Zhao, Q.; Xe, T. On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nature Communications, 2020, 11(1), 4257.
58. Ao-Ieong, W. S.; Chien, S. T.; Jiang, W. C.; Yet, S. F.; Wang, J. The effect of heat treatment toward glycerol-based, photocurable polymeric scaffold: Mechanical, degradation and biocompatibility. Polymers, 2021, 13(12), 1960.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *