帳號:guest(18.220.63.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊沛晴
作者(外文):Yang, Pei-Qing
論文名稱(中文):結合二氧化鈦強化附著層及APTES包覆之奈米鈀觸媒於玻璃基板金屬化之應用
論文名稱(外文):Application of TiO2 Adhesion Promoting Layer and APTES-capped Pd Nanoparticles for Metallization of Glass Substrate
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):王金勝
陳志銘
何政恩
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032510
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:98
中文關鍵詞:玻璃金屬化無電鍍反應析镀技術鈀觸媒強化附著層氨基矽烷化合物
外文關鍵詞:glass metallizationelectroless depositionPd catalystadhesion promoting layersilane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為改善玻璃基板上無電鍍銅層附著力,本研究使用二氧化鈦(TiO2)薄膜作為玻璃與銅層間的強化附著層,搭配自行研發之3-氨基丙基三乙氧基矽烷((3-Aminopropyl)triethoxysilane, APTES)包覆之自吸附奈米鈀觸媒,提升金屬銅層之附著力。
首部分將探討使用不同溶劑及還原劑乙醇/硼氫化納、乙二醇/硼氫化鈉以及乙二醇/氫氧化鈉(溶劑/還原劑)合成APTES-Pd對於觸媒的合成流程複雜度及表現。結果顯示,雖在活性以及粒徑方面不分軒輊,但從合成流程及後續發展的角度來看,乙醇/硼氫化納是最好的選擇。接著針對此配方合成之APTES-Pd進行討論,其粒徑小於10 nm,並以氨基朝內與鈀鍵結,矽烷氧基朝外的結構分散於溶液之中。朝外的矽氧基能與玻璃基板或是TiO2薄膜形成Si-O-Si或Si-O-Ti的共價鍵結,APTES-Pd得以在不需任何前處理的情況下吸附於基板之上,達到自吸附的效果。穩定性方面以粒徑、觸媒吸附表現、活性及結構四個方向探討,靜置40天的期間觸媒雖然會有離子化的情況發生,但在粒徑、吸附及活性方面表現穩定,顯示APTES-Pd具有一定的穩定性。此外,相較於商用離子鈀觸媒,APTES-Pd因其結構,能在玻璃基板上有優秀的吸附效果及無電鍍沉積表現。
第二部分探討TiO2強化附著層對於附著力之影響,沉積TiO2薄膜後附著力從72 gf/cm大幅提升至1392 gf/cm,撕裂面分析顯示銅層連帶玻璃被撕起的情況,說明附著力且已達到最高上限。本研究認為TiO2薄膜呈現孔洞結構,後續進行無電鍍銅製程時銅得以滲入孔洞,提升錨定效果,進而提升附著力。利用本研究製程所製造之銅層,與其他方式相比能通過3次的Reflow測試,顯示其可靠性。最後,也對於不同實驗參數如觸媒、TiO2薄膜厚度、退火溫度、孔洞大小以及無電鍍銅厚度對於附著力之影響進行探討。
This study aims to improve the adhesion of Cu film on glass substrate. To achieve this goal, we utilize titanium dioxide (TiO2) thin films as an adhesion promoter, coupled with a self-developed APTES-capped self-adsorption Pd nanoparticles APTES-Pd as an electroless deposition catalyst to enhance the adhesion between Cu film and glass substrate.
The first part of the study discusses characteristic and performance of APTES-Pd which synthesis by different solvents and reducing agents. Results show that ethanol/ sodium borohydride (solvent/reducing agents) is the best formulation. The structure of APTES-Pd facilitates the formation of covalent bond with glass substrates (Si-O-Si) and TiO2 films (Si-O-Ti), enabling APTES-Pd to adsorb onto substrates without any pre-treatment. Stability is evaluated in terms of particle size, adsorption performance, activity and structure. Despite ionization occurring, performance of particle size, adsorption performance and activity still maintain stable, indicating good stability of APTES-Pd. Furthermore, compare to commercial ion-Pd catalyst, APTES-Pd exhibits superior adsorption and copper deposition performance on glass substrates.
The second part of the study focuses on TiO2 thin film coated on glass as adhesion promoter. The adhesion test showed that the average peel strength significantly increased to 1392 gf/cm by spin coating TiO2 thin film on glass. Fracture surface analysis indicate that this adhesion reaches its limit. The study suggests that the porous structure of TiO2 films allows copper to deposit on pore, enhancing anchoring and adhesion. Copper layers produced by this process passed reflow tests three times, demonstrating good reliability. In the end, this study discusses effects of catalyst, porous TiO2 thickness, annealing temperature and pore size on adhesion.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻回顧 3
2.1 玻璃基板於微電子產業之應用 3
2.1.1 中介層 3
2.1.2 薄膜電晶體液晶顯示器 4
2.1.3 微發光二極體 5
2.2 玻璃基板金屬化 6
2.2.1 濺鍍金屬法 6
2.2.2 蒸鍍金屬法 6
2.2.3 無電鍍金屬法 6
2.2.3.1 無電鍍銅鍍液的組成及特性 7
2.2.3.2 無電鍍銅的反應及觸媒催化機制 9
2.3 玻璃基板上無電鍍金屬化的挑戰與解決方法 12
2.3.1 機械粗化 12
2.3.2 熱退火處理 12
2.3.3 矽烷化合物表面改質 13
2.3.4 金屬氧化物強化附著層 17
2.4 鈀觸媒於無電鍍銅之應用 25
2.4.1 錫鈀膠體觸媒(Sn/Pd Colloid) 25
2.4.2 離子鈀觸媒(Ion-Pd) 26
2.4.3 奈米鈀觸媒 27
2.5 3-氨基丙基三乙氧基矽烷與奈米粒子 29
第三章 實驗 32
3.1 藥品與材料 32
3.2 儀器列表 33
3.3 分析方法及儀器原理 35
3.3.1 水滴接觸角量測儀 (Water Contact angle measurement) 35
3.3.2 原子力顯微鏡 (Atomic Force Microscope, AFM) 36
3.3.3 動態光散射儀 (Dynamic Light Scattering, DLS) 37
3.3.4 掃描式電子顯微鏡(Scanning electron microscope, SEM) 38
3.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 39
3.3.6 萬能拉力機(Universal Testing Machine) 41
3.3.7 雙束型聚焦離子束顯微系統(Dual-beam Focused Ion Beam system, DB- FIB) 42
3.3.8 感應耦合電漿原子發射光譜儀(Inductively Couple Plasma Optical Emission Spectrometry, ICP-OES) 43
3.3.9 高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscope, HRTEM) 45
3.3.10 電化學分析儀(Electrochemical Analyzer) 46
3.3.11 迴焊爐(Reflow oven) 48
3.4 實驗方法 50
3.4.1 奈米鈀觸媒合成 50
3.4.2 無電鍍銅沉積 52
3.4.3 以TiO2為強化附著層之製程 53
3.4.4 玻璃基板高附著銅層之製程 54
第四章 結果與討論 55
4.1.1 不同合成配方之APTES-Pd鈀觸媒比較 55
4.1.2 APTES-Pd基本分析 58
4.1.3 APTES包覆奈米鈀觸媒結構 60
4.1.4 APTES-Pd自吸附於玻璃基板之機制 63
4.1.5 APTES-Pd穩定性分析 66
4.1.6 APTES-Pd與商用離子鈀觸媒 73
4.2 以TiO2為強化附著層之製程 75
4.2.1 TiO2強化附著層形貌 75
4.2.2 附著力結果分析 76
4.2.1 不同APTES-Pd及TiO2附著強化層製程參數之影響 82
第五章 結論 88
第六章 未來展望 90
第七章 參考資料 92
[1] D. A. Hutt, K. Williams, P. P. Conway, F. M. Khoshnaw, X. Cui, and D. Bhatt, "Challenges in the manufacture of glass substrates for electrical and optical interconnect," Circuit World, vol. 33, no. 1, pp. 22-30, 2007.
[2] V. Sukumaran, Q. Chen, F. Liu, N. Kumbhat, T. Bandyopadhyay, H. Chan, S. Min, C. Nopper, V. Sundaram, and R. Tummala, "Through-package-via formation and metallization of glass interposers," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010: Ieee, pp. 557-563.
[3] R. R. Tummala, V. Sundaram, R. Chatterjee, P. M. Raj, N. Kumbhat, V. Sukumaran, V. Sridharan, A. Choudury, Q. Chen, and T. Bandyopadhyay, "Trend from ICs to 3D ICs to 3D systems," in 2009 IEEE Custom Integrated Circuits Conference, 2009: IEEE, pp. 439-444.
[4] V. Sukumaran, T. Bandyopadhyay, V. Sundaram, and R. Tummala, "Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 9, pp. 1426-1433, 2012.
[5] R. V. Shenoy, K.-Y. Lai, and E. Gusev, "2.5 D advanced system-in-package: Processes, materials & integration aspects," ECS Transactions, vol. 61, no. 3, p. 183, 2014.
[6] P. Benjamin and C. Weaver, "The adhesion of evaporated metal films on glass," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 261, no. 1307, pp. 516-531, 1962.
[7] N. Jiang and J. Silcox, "Observations of reaction zones at chromium/oxide glass interfaces," J. Appl. Phys., vol. 87, no. 8, pp. 3768-3776, 2000.
[8] A. Miranda, L. Martínez, and P. De Beule, "Facile Synthesis of an Aminopropylsilane Layer on Si/SiO2 Substrates Using Ethanol as APTES Solvent. MethodsX 2020, 7, 100931," ed, 2020.
[9] A. A. Issa and A. S. Luyt, "Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review," Polymers, vol. 11, no. 3, p. 537, 2019.
[10] C.-H. Chiang, H. Ishida, and J. L. Koenig, "The structure of γ-aminopropyltriethoxysilane on glass surfaces," J. Colloid Interface Sci., vol. 74, no. 2, pp. 396-404, 1980.
[11] G. Tan, L. Zhang, C. Ning, X. Liu, and J. Liao, "Preparation and characterization of APTES films on modification titanium by SAMs," Thin Solid Films, vol. 519, no. 15, pp. 4997-5001, 2011.
[12] B. M. Sawyer, Y. Suzuki, R. Furuya, C. Nair, T.-C. Huang, V. Smet, K. Panayappan, V. Sundaram, and R. Tummala, "Design and demonstration of a 2.5-D glass interposer BGA package for high bandwidth and low cost," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 4, pp. 552-562, 2017.
[13] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, no. 3, pp. 159-172, 2000.
[14] C. Fuller and P. Ghate, "Magnetron-sputtered aluminum films for integrated circuit interconnections," Thin Solid Films, vol. 64, no. 1, pp. 25-37, 1979.
[15] Z. Yin, S. Lin, Z. Fu, Y. Wang, C. Hu, and Y. Su, "Effect of sputtering process parameters on the uniformity of copper film deposited in micro-via," Journal of Materials Research and Technology, vol. 25, pp. 5249-5259, 2023.
[16] X. An, C. Yang, Z. Wu, L. Liu, S. Li, L. Zhou, W. Tang, Z. Ma, Z. Wu, and R. K. Fu, "Self‐regulated super‐hydrophobic Cu/CuO electrode film deposited by one‐step high‐power sputtering," Advanced Electronic Materials, vol. 6, no. 1, p. 1900891, 2020.
[17] A. Baptista, F. Silva, J. Porteiro, J. Míguez, and G. Pinto, "Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands," Coatings, vol. 8, no. 11, p. 402, 2018.
[18] Z. Xu, L. He, X. Chen, Y. Zhao, and X. Cao, "Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition," J. Alloys Compd., vol. 508, no. 1, pp. 94-98, 2010.
[19] B. Li, M. Gabás, E. Ochoa-Martínez, V. G. de la Cruz, M. C. López-Escalante, L. León-Reina, R. Peña, P. García-Díaz, I. García, and C. Algora, "Experimental optical and structural properties of ZnS, MgF2, Ta2O5, Al2O3 and TiO2 deposited by electron beam evaporation for optimum anti-reflective coating designs," Solar Energy, vol. 243, pp. 454-468, 2022.
[20] D. Gundlach, J. Nichols, L. Zhou, and T. Jackson, "Thin-film transistors based on well-ordered thermally evaporated naphthacene films," Appl. Phys. Lett., vol. 80, no. 16, pp. 2925-2927, 2002.
[21] G. Schmid and L. F. Chi, "Metal clusters and colloids," Adv. Mater., vol. 10, no. 7, pp. 515-526, 1998.
[22] A. Brenner and G. E. Riddell, "Nickel plating on steel by chemical reduction," Plat. Surf. Finish., vol. 85, no. 8, pp. 54-55, 1998.
[23] A. Brenner and G. E. Riddell, "Nickel plating on steel by chemical reduction," Journal of research of the National Bureau of Standards, vol. 37, no. 1, p. 31, 1946.
[24] A. Cahill, "Surface catalyzed reduction of copper," Proc. Am. Electroplaters’ Soc, vol. 44, p. 130, 1957.
[25] T. Yonezawa, K. Imamura, and N. Kimizuka, "Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands," Langmuir, vol. 17, no. 16, pp. 4701-4703, 2001.
[26] C. Ryu, K.-W. Kwon, A. L. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G. W. Ray, and S. S. Wong, "Microstructure and reliability of copper interconnects," IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1113-1120, 1999.
[27] A. Hung, "Electroless copper deposition with hypophosphite as reducing agent," Plat. Surf. Finish., vol. 75, no. 1, p. 62, 1988.
[28] I. Ohno, O. Wakabayashi, and S. Haruyama, "Anodic oxidation of reductants in electroless plating," J. Electrochem. Soc., vol. 132, no. 10, p. 2323, 1985.
[29] E. Juzeliunas, H. W. Pickering, and K. G. Weil, "Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes," J. Electrochem. Soc., vol. 147, no. 3, p. 1088, 2000.
[30] M. Oita, M. Matsuoka, and C. Iwakura, "Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl," Electrochim. Acta, vol. 42, no. 9, pp. 1435-1440, 1997.
[31] Y. Shacham-Diamand and V. M. Dubin, "Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization," Microelectron. Eng., vol. 33, no. 1-4, pp. 47-58, 1997.
[32] M. Paunovic and M. Schlesinger, Fundamentals of electrochemical deposition. john wiley & sons, 2006.
[33] J. Van Den Meerakker, "On the mechanism of electroless plating. II. One mechanism for different reductants," J. Appl. Electrochem., vol. 11, no. 3, pp. 395-400, 1981.
[34] J. Van Den Meerakker, "On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces," J. Appl. Electrochem., vol. 11, no. 3, pp. 387-393, 1981.
[35] H. Kita, "Periodic variation of exchange current density of hydrogen electrode reaction with atomic number and reaction mechanism," J. Electrochem. Soc., vol. 113, no. 11, p. 1095, 1966.
[36] A. Demir, P. Maressa, and B. Previtali, "Fibre laser texturing for surface functionalization," Physics Procedia, vol. 41, pp. 759-768, 2013.
[37] S. S. Das and P. K. Patowari, "Fabrication of serpentine micro-channels on glass by ultrasonic machining using developed micro-tool by wire-cut electric discharge machining," The International Journal of Advanced Manufacturing Technology, vol. 95, pp. 3013-3028, 2018.
[38] A. K. Verma, D. K. Mishra, K. Pawar, and P. Dixit, "Investigations into surface topography of glass microfeatures formed by pulsed electrochemical discharge milling for microsystem applications," Microsystem Technologies, vol. 26, pp. 2105-2116, 2020.
[39] M. Ohring, Materials Science of Thin Films: Depositon and Structure. Elsevier, 2001.
[40] L. B. Freund and S. Suresh, Thin film materials: stress, defect formation and surface evolution. Cambridge university press, 2004.
[41] M. Huff, "Residual Stresses in Deposited Thin-Film Material Layers for Micro-and Nano-Systems Manufacturing," Micromachines, vol. 13, no. 12, p. 2084, 2022.
[42] H. Liu, R. Guo, F. Viejo, and Z. Liu, "Comparison of microstructure and residual stress characteristics of electroless Ni–W–P coatings annealed with a laser and a furnace," Surf. Coat. Technol., vol. 206, no. 8-9, pp. 2380-2387, 2012.
[43] J. Song and J. Yu, "Residual stress measurements in electroless plated Ni–P films," Thin Solid Films, vol. 415, no. 1-2, pp. 167-172, 2002.
[44] P. A. Buining, B. M. Humbel, A. P. Philipse, and A. J. Verkleij, "Preparation of functional silane-stabilized gold colloids in the (sub) nanometer size range," Langmuir, vol. 13, no. 15, pp. 3921-3926, 1997.
[45] C.-W. Hsu, W.-Y. Wang, S.-H. Wang, Y.-H. Kao, and T.-C. Wei, "Adhesive nickel-phosphorous electroless plating on silanized silicon wafer catalyzed by reactive palladium nanoparticles," in 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015: IEEE, pp. 245-249.
[46] J. P. Matinlinna, C. Y. K. Lung, and J. K. H. Tsoi, "Silane adhesion mechanism in dental applications and surface treatments: A review," Dent. Mater., vol. 34, no. 1, pp. 13-28, 2018.
[47] P. G. Pape, "Adhesion promoters: Silane coupling agents," in Applied plastics engineering handbook: Elsevier, 2011, pp. 503-517.
[48] B. Arkles and P. Dispersants, "Silanes," Gelest Inc., Morrisville, PA, 2006.
[49] L.-H. Lee, Fundamentals of adhesion. Springer Science & Business Media, 2013.
[50] H. Yoshiki, V. Alexandruk, K. Hashimoto, and A. Fujishima, "Electroless copper plating using ZnO thin film coated on a glass substrate," J. Electrochem. Soc., vol. 141, no. 5, p. L56, 1994.
[51] R. Sun, D. Tryk, K. Hashimoto, and A. Fujishima, "Formation of catalytic Pd on ZnO thin films for electroless metal deposition," J. Electrochem. Soc., vol. 145, no. 10, p. 3378, 1998.
[52] A. Miller, L. Yu, J. Blickensderfer, and R. Akolkar, "Electrochemical copper metallization of glass substrates mediated by solution-phase deposition of adhesion-promoting layers," J. Electrochem. Soc., vol. 162, no. 14, p. D630, 2015.
[53] D. Plana, A. I. Campbell, S. N. Patole, G. Shul, and R. A. Dryfe, "Kinetics of electroless deposition: The copper− dimethylamine borane system," Langmuir, vol. 26, no. 12, pp. 10334-10340, 2010.
[54] W.-Y. Wang, Y.-H. Kao, T.-Y. Yang, Y.-L. Chueh, and T.-C. Wei, "Adhesive Wet Metallization on TiO2-Coated Glass," J. Electrochem. Soc., vol. 168, no. 4, p. 042506, 2021.
[55] S. Hunegnaw, Z. Liu, H. Fu, J. Wang, M. Merschky, K. Mukai, and T. Magaya, "VitroCoat GI-Ultra-thin adhesive layer for metallization of glass interposer," in 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015: IEEE, pp. 149-152.
[56] J. C. R. Shipley, "Method of electroless deposition on a substrate and catalyst solution therefor," ed: Google Patents, 1961.
[57] E. J. O'Sullivan, J. Horkans, J. R. White, and J. M. Roldan, "Characterization of PdSn catalysts for electroless metal deposition," IBM J. Res. Dev., vol. 32, no. 5, pp. 591-602, 1988.
[58] C. De Minjer and P. vd Boom, "The nucleation with SnCl2‐PdCl2 solutions of glass before electroless plating," J. Electrochem. Soc., vol. 120, no. 12, p. 1644, 1973.
[59] M. Khattak and R. J. Magee, "Tin (II) chloride complexes of platinum metals: the palladium (II)–tin (II) system," Chemical Communications (London), no. 17, pp. 400a-400a, 1965.
[60] J. Cookson, "The preparation of palladium nanoparticles," Platinum Met. Rev., vol. 56, no. 2, pp. 83-98, 2012.
[61] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. R. De Miguel, and L. Bergström, "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens," Science and technology of advanced materials, vol. 14, no. 2, p. 023001, 2013.
[62] M.-P. Pileni, "The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals," Nature materials, vol. 2, no. 3, pp. 145-150, 2003.
[63] S. Jayalakshmi, P. Venkatesh, and P. B. Ramesh, "Recent advances in electroless copper deposition-A review," International Journal of Advanced Research in Engineering and Applied Sciences, vol. 5, no. 8, pp. 1-18, 2016.
[64] Y. T. Chang, P. Y. Liao, H. S. Sheu, Y. J. Tseng, F. Y. Cheng, and C. S. Yeh, "Near‐infrared light‐responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide‐capped silica shell," Adv. Mater., vol. 24, no. 25, pp. 3309-3314, 2012.
[65] B. Luo, Y. C. Pu, S. A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, and J. Z. Zhang, "Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability," Angew. Chem. Int. Ed., vol. 55, no. 31, pp. 8864-8868, 2016.
[66] S. Villa, P. Riani, F. Locardi, and F. Canepa, "Functionalization of Fe3O4 NPs by silanization: use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization," Materials, vol. 9, no. 10, p. 826, 2016.
[67] G. Jakša, B. Štefane, and J. Kovač, "Influence of different solvents on the morphology of APTMS-modified silicon surfaces," Appl. Surf. Sci., vol. 315, pp. 516-522, 2014.
[68] L. Zhao, J. Yu, B. Cheng, and X. Zhao, "Preparation and formation mechanisms of monodispersed silicon dioxide spherical particles," Acta Chim. Sinica, vol. 61, no. 4, p. 562, 2003.
[69] Y.-H. Kao and T.-C. Wei, "Novel active nano-palladium catalyst for adhesive electroless plating of Ni-P layer on glass interposer," in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017: IEEE, pp. 130-133.
[70] F. Fievet, J. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, "Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles," Solid State Ionics, vol. 32, pp. 198-205, 1989.
[71] L.-J. Chen, C.-C. Wan, and Y.-Y. Wang, "Chemical preparation of Pd nanoparticles in room temperature ethylene glycol system and its application to electroless copper deposition," J. Colloid Interface Sci., vol. 297, no. 1, pp. 143-150, 2006.
[72] S. Bhattacharjee, "DLS and zeta potential–what they are and what they are not?," J. Controlled Release, vol. 235, pp. 337-351, 2016.
[73] R. Chen, Y. Jiang, W. Xing, and W. Jin, "Fabrication and catalytic properties of palladium nanoparticles deposited on a silanized asymmetric ceramic support," Industrial & Engineering Chemistry Research, vol. 50, no. 8, pp. 4405-4411, 2011.
[74] R. W. Scott, H. Ye, R. R. Henriquez, and R. M. Crooks, "Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles," Chem. Mater., vol. 15, no. 20, pp. 3873-3878, 2003.
[75] G. Kumar, J. Blackburn, R. Albridge, W. Moddeman, and M. Jones, "Photoelectron spectroscopy of coordination compounds. II. Palladium complexes," Inorganic Chemistry, vol. 11, no. 2, pp. 296-300, 1972.
[76] D. Meroni, L. Lo Presti, G. Di Liberto, M. Ceotto, R. G. Acres, K. C. Prince, R. Bellani, G. Soliveri, and S. Ardizzone, "A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: An experimental and theoretical study," The Journal of Physical Chemistry C, vol. 121, no. 1, pp. 430-440, 2017.
[77] Z. Liu, S. Hunegnaw, H. Fu, J. Wang, T. Magaya, M. Merschky, T. Bernhard, A. Shorey, and H. Yun, "A metal oxide adhesion layer prepared with water based coating solution for wet Cu metallization of glass interposer," in International Symposium on Microelectronics, 2015, vol. 2015, no. 1: International Microelectronics Assembly and Packaging Society, pp. 000365-000369.
[78] C. E. Cordonier, K. Okabe, Y. Horiuchi, A. Nakamura, K. Ishikawa, S. Seino, S. Takagi, and H. Honma, "Formation of micrometer scale metal structures on glass by selective electroless plating on photopatterned titanium and copper containing films," Langmuir, vol. 33, no. 51, pp. 14571-14579, 2017.
[79] M. Takayama, K. Inoue, H. Honma, and M. Watanabe, "Cu metallisation on glass substrate with through glass via using wet plating process," Transactions of the IMF, vol. 99, no. 2, pp. 87-93, 2021.

(此全文20260806後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *