帳號:guest(52.14.31.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王映璇
作者(外文):Wang, Ying-Hsuan
論文名稱(中文):運用傅立葉紅外光譜與電噴灑式氣相電泳法開發定量分析技術作為銅箔製程用硫醇添加劑與半導體製程用化學品中不純物粒子分析之應用
論文名稱(外文):Fourier-Transform Infrared Spectroscopy and Electrospray-Based Gas-Phase Electrophoresis for Quantitative Analysis of Thiolated Additives for Copper Electroplating Process and Impurity Particles for Chemicals in Semiconductor Manufacturing Process
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):潘詠庭
陳炳宏
口試委員(外文):Pan, Yung-Tin
Chen, Bing-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032503
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:70
中文關鍵詞:銅電鍍金奈米粒子紅外光技術電噴灑吸附
外文關鍵詞:Copper electroplatingGold nanoparticlesInfrared spectroscopyElectrosprayAdsorption
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目標以傅立葉紅外光譜與電噴灑式氣相電泳法為基礎,開發定量分析技術作為銅箔製程用硫醇添加劑與半導體製程用化學品中不純物粒子分析之應用。
第一部分的研究為定量銅箔製程所使用的微濃度化學添加劑,以優化製程。銅箔是一種高純度金屬銅的薄層,具有優異的導電性、延展性和耐腐蝕性,廣泛應用於電子領域。在銅電鍍溶液中添加含硫醇基 (-SH) 的化學添加劑 (如促進劑和抑制劑) 對於優化銅箔製程至關重要。而銅電鍍液存在大量離子和強酸環境等複雜因素,導致分析極具挑戰性,因此,精確地量化銅電鍍液中硫醇添加劑變得十分關鍵。在本研究中,以金奈米粒子 (AuNP) 作為吸附劑,利用分子吸附原理將硫醇添加劑 (抑制劑 – 硫醇基化聚乙二醇 (Poly (ethylene glycol) methyl ether thiol, PEG-SH) 及促進劑 – 3-硫醇基丙酸 (3-mercaptopropionic acid, MPA)) 於銅電鍍液中進行分離,以避免銅電鍍液的複雜環境,並於AuNP上形成硫醇分子膜,從而提高硫醇添加劑在分析上的訊號雜訊比。透過衰減全反射式傅立葉轉換紅外光譜儀 (ATR-FTIR) 對於AuNP上的硫醇分子層進行定量,以及利用電噴灑式氣相奈米粒子電移動度分析儀 (ES-DMA) 輔助ATR-FTIR之定量分析結果,以提升定量分析的準確性。首先,我們藉由ATR-FTIR與ES-DMA對於AuNP上的PEG-SH進行測量,找到優化定量分析的參數條件,在AuNP膠體原液體積500 µL與吸附反應時間1小時下,有很好的定量穩定性。接著,在固定此AuNP數量濃度與吸附反應時間,得到PEG-SH和MPA的Langmuir吸附等溫曲線,得知在飽和吸附點前為可定量的濃度範圍。結果指出,在此參數條件與定量濃度範圍下,隨著銅電鍍液中硫醇添加劑的濃度增加,AuNP表面的硫醇添加劑之特徵峰的IR吸收度訊號呈顯著線性增加,並得到PEG-SH濃度可檢測範圍為5 µM至100 µM,MPA濃度可檢測範圍則為10 µM至200 µM。我們成功分離並定量銅電鍍液中的硫醇添加劑,實現對於銅箔製程更精確的控制。
第二部分的研究為對半導體製程中所使用的化學品溶液進行不純物粒子分析,以降低半導體製程中矽晶圓上的粒子缺陷數目。粒子缺陷的發生主要是粒子殘留於晶圓表面,會直接影響晶圓產量和最終電子設備產品的品質,所以在化學品供應端及早發現粒子並進行抑制,以避免粒子進入後續的晶圓製造是一項非常關鍵之技術。因此我們希望建立一分析方法,期望能成功發現與定量化學品溶液中可能的外來粒子。由於此類化學品溶液含有多種配方成分 (e.g., 溶劑和溶質) 的因素,導致分析時會因配方成分訊號干擾以致難以監測到這些不純物粒子。因此本研究利用ES-DMA技術和改變稀釋倍率的方法來排除多成分化學品的訊號干擾,以期能監測到化學品中可能存在的不純物粒子。首先以電噴灑方式,藉由在高導電度下降低噴灑液滴的尺寸來提昇溶劑揮發度,以有效地除去化學品溶液中的溶劑和高揮發度溶質,氣溶膠相中將僅剩乾燥後的低揮發度溶質聚集所生成的粒子和可能存在的不純物粒子兩種粒徑分佈。接著藉由調控化學品溶液的稀釋倍率來分離出溶質粒徑,使得能測得不純物粒子的粒徑。結果指出,當稀釋倍率為10倍時,僅測得一個因溶質聚集所生成的粒子之粒徑分布,得知不純物粒子被大量的溶質包覆;當稀釋倍率增加至100倍時,產生的溶質聚集所生成的粒子的粒徑減小,開始能與不純物粒子的粒徑分離與個別分析;在稀釋倍率增加至2000倍時,溶質聚集所生成的粒子的粒徑大小低於偵測極限,將能呈現不純物粒子之單一粒徑分布,並可藉由計算不同化學品溶液中的不純物粒子含量,了解使用不同過濾器過濾之成效。我們成功運用此技術找到化學品溶液中可能存在的不純物粒子,並對其進行定量,來評估過濾器效果以管控化學品溶液品質,在化學品供應階段解決可能的污染來源,來降低矽晶圓上的粒子缺陷。
The first part of the work focuses on quantifying trace chemical additives used in the copper foil manufacturing process. Copper foil, a thin layer of high-purity metallic copper, having excellent conductivity, ductility, and corrosion resistance, is extensively applied in various electronic applications. Thiolated (SH-containing) chemical additives (i.e., accelerator and inhibitor) in copper electroplating solution are known to be critical for optimizing the copper foil manufacturing processes. Due to the high ionic strength and acidity of copper electroplating solution, proper and accurate characterization of the thiolated chemical additives is a critical concern. In this study, a facile, accurate approach is developed for quantitative characterization of thiolated additives in the copper electroplating solution. Firstly, gold nanoparticles (AuNPs) were employed as an adsorbent for separating the thiolated chemical additives, namely, poly (ethylene glycol) methyl ether thiol (PEG-SH) as inhibitor, and 3-mercaptopropionic acid (MPA) as accelerator from other interfering chemicals present in the copper electroplating solution. Subsequently, quantitative analysis of the AuNPs in the form of thin particle film was performed using attenuated total reflection Fourier-transform infrared spectroscopy. Electrospray-differential mobility analyzer was employed orthogonally for the quantitative analysis of the amount of thiolated additives adsorbed on AuNP. Interestingly, the results indicated that the detection concentration ranges of 5 μM–100 μM for PEG-SH and 10 μM–200 μM for MPA, respectively. Overall, this work demonstrates a successful separation and analysis methodology for the thiolated additives in copper electroplating solution which enables the precise control over the copper foil manufacturing process.
The second part of the work is the analysis of impurity particles in chemical solutions used in the semiconductor manufacturing process, with the aim of reducing the number of particle defects on wafers. The occurrence of particle defects, mainly due to particles remaining on the wafer surface, directly affects wafer yield and the quality of final products. Therefore, early detection and suppression of particles at the chemical supply end are crucial to prevent introduction into subsequent wafer manufacturing. We aim to establish a method to successfully detect and quantify potential foreign particles in chemical solutions. Due to the presence of multiple components in the chemical solutions (e.g., solvents and solutes), component signal interference makes it difficult to monitor these impurity particles. This study utilized ES-DMA and method of changing dilution factor to eliminate the effects of multi-component chemical solutions, with the goal of detecting possible impurity particles in the chemicals. Initially, electrospray was employed to enhance solvent evaporation by reducing droplet size under high electrical conductivity, effectively removing high volatility components from the chemical solution. Only low-volatility solutes and impurity particles remained in the aerosol phase, showing two distinct size distributions. Subsequently, by adjusting the dilution factor of the chemical solution, we can separate the solute particles, enabling the detection of impurity particles. The results indicated that at a dilution factor of 10, only a single particle size distribution generated by solute aggregation was detected, suggesting that impurity particles were encapsulated by the solute. When the dilution factor was increased to 100, the particle size of the solute aggregation decreased, allowing for the separation and individual analysis of impurity particle sizes. At a dilution factor of 2000, particle size of solute was below the detection limit, presenting a single size distribution of impurity particles. By calculating the concentration of impurity particles in chemical solution, we assessed the effectiveness of different filters in filtering chemical solutions, effectively reducing the content of impurity particles. We have successfully identified and quantified potential impurity particles in chemicals, resolving potential contamination sources at the chemical supply stage to reduce particle defects on silicon wafers.
摘 要 I
Abstract III
致謝 V
目錄 I
圖目錄 III
第一章 緒論 1
1-1銅箔製程 1
1-2 銅電鍍液的用途 2
1-3 銅電鍍液的添加劑 3
1-4 硫醇添加劑之定量分析及分離技術 4
1-5 半導體製程的晶圓缺陷 5
1-6 粒子缺陷偵測技術 7
1-7 研究目的與方法 8
第二章 實驗方法 11
2-1 實驗藥品 11
2-2樣品製備方式與分析技術 13
2-2.1 溶液之配置方法 13
2-2.2 AuNP表面吸附分子之分析方法 16
2-2.3定量銅電鍍製程用硫醇添加劑之實驗設計 18
2-2.4定量半導體製程用化學品中的不純物粒子之實驗設計 20
2-3 分析儀器 22
2-4 分析儀器原理及方法 23
2-4.1 衰減全反射式傅立葉轉換紅外光譜儀 (ATR-FTIR) 23
2-4.2 電噴灑式氣相奈米粒子電移動度分析儀 (ES-DMA) 26
2-4.3 氣溶膠粒子靜電收集器 (Electrostatic precipitator) 29
2-4.4 掃描式電子顯微鏡 (Scanning electron microscopy) 30
第三章 結果與討論 31
3-1 銅電鍍製程用硫醇添加劑之定量分析 31
3-1.1 ATR-FTIR分析之實驗條件 31
3-1.2 銅電鍍液中的單一硫醇添加劑之分析 39
3-1.3 銅電鍍溶中的兩種硫醇添加劑之分析 48
3-2 半導體製程用化學品中不純物粒子之定量分析 52
3-2.1 稀釋倍率之影響 52
3-2.2 不同樣品溶液中的不純物粒子濃度 56
第四章 結論 60
第五章 未來展望 62
參考文獻 64

(1) Zhao, H.; Chen, W.; Wu, M.; Li, R.; Dong, X. Influence of low oxygen content on the recrystallization behavior of rolled copper foil. Oxidation of Metals 2018, 90, 203-215.
(2) Coonrod, J. Different copper foils for different reasons. The PCB magazine 2012, 60-64.
(3) Suzuki, O.; Yoshi, A.; Tsubura, H.; Sato, M.; Obata, N.; Kokaji, Y. Nano anchoring copper foil for next generation printed wiring boards. In 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), 2016; IEEE: pp 1-6.
(4) Tran, T. Q.; Chinnappan, A.; Lee, J. K. Y.; Loc, N. H.; Tran, L. T.; Wang, G.; Kumar, V. V.; Jayathilaka, W.; Ji, D.; Doddamani, M. 3D printing of highly pure copper. Metals 2019, 9 (7), 756.
(5) Cobley, A.; Gabe, D. Methods for achieving high speed acid copper electroplating in the PCB industry. Circuit World 2001, 27 (3), 19-25.
(6) Lancaster, A.; Keswani, M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration 2018, 60, 204-212.
(7) Xia, H.-y.; Wang, Y.-k.; Fu, Z.-w. Growing cuprite nanoparticles on copper current collector toward uniform Li deposition for anode-free lithium batteries. Applied Surface Science 2023, 617, 156529.
(8) Holden, H. PWB Build‐upTechnologies: Smaller, Thinner and Lighter. Circuit World 1997, 23 (2), 14-17.
(9) Zhang, P.; Zhang, L.; Qu, X. Anomalous vertical twins with high (2 2 0) texture in direct current electroplating copper film. Applied Surface Science 2023, 638, 158102.
(10) Zhou, M.; Meng, Y.; Ling, J.; Zhang, Y.; Huang, W.; Min, Y.; Shen, X.; Xu, Q. 5-Amino-1, 3, 4-thiadiazole-2-thiol as a new leveler for blind holes copper electroplating: Theoretical calculation and electrochemical studies. Applied Surface Science 2022, 606, 154871.
(11) Frank, A.; Bard, A. J. The decomposition of the sulfonate additive sulfopropyl sulfonate in acid copper electroplating chemistries. Journal of The Electrochemical Society 2003, 150 (4), 244.
(12) Tan, M.; Harb, J. N. Additive behavior during copper electrodeposition in solutions containing Cl−, PEG, and SPS. Journal of The Electrochemical Society 2003, 150 (6), C420.
(13) Hebert, K. R.; Adhikari, S.; Houser, J. E. Chemical mechanism of suppression of copper electrodeposition by poly (ethylene glycol). Journal of The Electrochemical Society 2005, 152 (5), C324.
(14) Lee, Y.-K.; O’Keefe, T. J. Evaluating and monitoring nucleation and growth in copper foil. JOM 2002, 54, 37-41.
(15) Kondo, K.; Murakami, H. Crystal growth of electrolytic Cu foil. Journal of The Electrochemical Society 2004, 151 (7), C514.
(16) Dutra, A.; O'keefe, T. Copper nucleation on titanium for thin film applications. Journal of applied electrochemistry 1999, 29, 1217-1227.
(17) Zhang, Y.; Ding, G.; Cheng, P.; Wang, H. Numerical simulation and experimental verification of additive distribution in through-silicon via during copper filling process. Journal of The Electrochemical Society 2014, 162 (1), 62.
(18) Cao, Y.; Taephaisitphongse, P.; Chalupa, R.; West, A. C. Three-additive model of superfilling of copper. Journal of The Electrochemical Society 2001, 148 (7), C466.
(19) Choe, S.; Kim, M. J.; Kim, H. C.; Cho, S. K.; Ahn, S. H.; Kim, S.-K.; Kim, J. J. Degradation of bis (3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling. Journal of The Electrochemical Society 2013, 160 (12), 3179.
(20) Tan, M.; Guymon, C.; Wheeler, D. R.; Harb, J. N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. Journal of The Electrochemical Society 2006, 154 (2), 78.
(21) Choe, S.; Kim, M. J.; Kim, H. C.; Lim, T.; Park, K. J.; Kim, K. H.; Ahn, S. H.; Lee, A.; Kim, S.-K.; Kim, J. J. Degradation of poly (ethylene glycol–propylene glycol) copolymer and its influences on copper electrodeposition. Journal of Electroanalytical Chemistry 2014, 714, 85-91.
(22) Koh, L.; You, G.; Lim, S.; Li, C.; Foo, P. Factors influencing open circuit decomposition behavior of sulfur-containing additive component used in Cu plating for advanced interconnect metallization. Microelectronics journal 2001, 32 (12), 973-977.
(23) Tran, A. V. N.; Van Hoang, H.; Hirato, T.; Kondo, K. Monitoring of SPS concentration by the ring current using a rotating ring-disk electrode with dissolving disk copper to refresh a void free solution. Journal of The Electrochemical Society 2019, 166 (14), 742.
(24) Ellis, C. D.; Hamilton, M. C.; Nakamura, J. R.; Wilamowski, B. M. Efficient Determination of Copper Electroplating Chemistry Additives. IEEE Transactions on Components, Packaging and Manufacturing Technology 2014, 4 (8), 1380-1390.
(25) D’Urzo, L.; Wang, H.; Pa, A.; Zhi, C. SPE-HPLC Detection of Organic Additives in Acidic Copper Plating Baths: I. Sulfopropyl Disulfide-Based Brighteners. Journal of The Electrochemical Society 2005, 152 (4), 243.
(26) Plante, M. A.; Fairlie, S.; Bailey, B.; Acworth, I. N. Measurement and Control of Copper Additives in Electroplating Baths by High-Performance Liquid Chromatography. White paper 2016.
(27) Lu, Y.; Yang, F.; Chen, S.; Shi, W.; Qi, C.; Peng, G. Decomplexation of Ni (II)-citrate and recovery of nickel from chelated nickel containing electroplating wastewater by peroxymonosulfate with nickel. Separation and Purification Technology 2022, 283, 120142.
(28) Yoon, Y.; Kim, H.; Kim, T. Y.; Lee, K. H.; Choe, S.; Kim, J. J. Selective determination of PEG-PPG concentration in Cu plating bath with cyclic voltammetry stripping using iodide ion. Electrochimica Acta 2020, 339, 135916.
(29) Kumar, N.; Kennedy, K.; Gildersleeve, K.; Abelson, R.; Mastrangelo, C.; Montgomery, D. A review of yield modelling techniques for semiconductor manufacturing. International Journal of Production Research 2006, 44 (23), 5019-5036.
(30) Espadinha-Cruz, P.; Godina, R.; Rodrigues, E. M. A review of data mining applications in semiconductor manufacturing. Processes 2021, 9 (2), 305.
(31) Park, S. H.; Kim, S.; Baek, J.-G. Kernel-density-based particle defect management for semiconductor manufacturing facilities. Applied Sciences 2018, 8 (2), 224.
(32) O’Leary, J.; Sawlani, K.; Mesbah, A. Deep learning for classification of the chemical composition of particle defects on semiconductor wafers. IEEE transactions on semiconductor manufacturing 2020, 33 (1), 72-85.
(33) Singh, A.; Rosin, J. Random defect limited yield using a deterministic model. In 2001 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (IEEE Cat. No.01CH37160), 23-24 April 2001, 2001; pp 161-165. DOI: 10.1109/ASMC.2001.925641.
(34) Saqlain, M.; Abbas, Q.; Lee, J. Y. A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing 2020, 33 (3), 436-444.
(35) Fan, S.-K. S.; Hsu, C.-Y.; Jen, C.-H.; Chen, K.-L.; Juan, L.-T. Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes. Advanced Engineering Informatics 2020, 46, 101166.
(36) Zhu, J.; Liu, J.; Xu, T.; Yuan, S.; Zhang, Z.; Jiang, H.; Gu, H.; Zhou, R.; Liu, S. Optical wafer defect inspection at the 10 nm technology node and beyond. International Journal of Extreme Manufacturing 2022, 4 (3), 032001.
(37) Rastegar, A.; Samayoa, M.; House, M.; Kurtuldu, H.; Eah, S.-K.; Morse, L.; Harris-Jones, J. Particle control challenges in process chemicals and ultra-pure water for sub-10nm technology nodes. In Extreme Ultraviolet (EUV) Lithography V, 2014; SPIE: Vol. 9048, pp 157-170.
(38) Aziz, F. A.; Ahmad, I. H.; Zulkifli, N.; Yusuff, R. M. Particle reduction at metal deposition process in wafer fabrication. In Manufacturing System, InTech Rijeka, Croatia, 2012; pp 1-26.
(39) Abejón, R.; Garea, A.; Irabien, A. Ultrapurification of hydrogen peroxide solution from ionic metals impurities to semiconductor grade by reverse osmosis. Separation and purification technology 2010, 76 (1), 44-51.
(40) Xie, L.; Huang, R.; Gu, N.; Cao, Z. A novel defect detection and identification method in optical inspection. Neural Computing and Applications 2014, 24, 1953-1962.
(41) Okamoto, A.; Kuniyasu, H.; Hattori, T. Detection of 30–40-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering. IEEE Transactions on Semiconductor Manufacturing 2006, 19 (4), 372-380.
(42) Patterson, O. D.; Lee, J.; Lei, C.; Salvador, D. E-beam inspection for detection of sub-design rule physical defects. In 2012 SEMI Advanced Semiconductor Manufacturing Conference, 2012; IEEE: pp 383-387.
(43) Othman, A.; Kim, H. J.; Trivedi, R.; Kulasingam, T.; Seo, J. Understanding and mitigating temperature-induced agglomeration in silica-based chemical mechanical planarization (CMP) slurry storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 691, 133802.
(44) Lee, M.; Kim, D.; Heo, T.-Y.; Park, T.; Kim, W.; Choi, D.; Kim, H.; Kim, J. Universal inherent fluctuations in statistical counting of large particles in slurry used for semiconductor manufacturing. Scientific Reports 2020, 10 (1), 14731.
(45) Kuruma, Y.; Sakaguchi, T.; Sakurai, H. Mass-measurement-type optical particle counting method for determination of number concentration of liquid-borne particles. Advanced Powder Technology 2020, 31 (2), 848-858.
(46) Basim, G.; Adler, J.; Mahajan, U.; Singh, R.; Moudgil, B. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects. Journal of the Electrochemical Society 2000, 147 (9), 3523.
(47) Bekker, A.; McShane, J.; Vassallo, D.; Bedell, D.; Li, T.; Livk, I. 2-D sizing of sodium oxalate crystals by automated optical image analysis. Advanced Powder Technology 2012, 23 (4), 509-516.
(48) Gao, R.; Perring, A.; Thornberry, T.; Rollins, A.; Schwarz, J.; Ciciora, S.; Fahey, D. A high-sensitivity low-cost optical particle counter design. Aerosol Science and Technology 2013, 47 (2), 137-145.
(49) Tricase, A.; Blasi, D.; Favia, A.; Stefanachi, A.; Leonetti, F.; Colafemmina, G.; Torsi, L.; Scamarcio, G. Surface composition of mixed self-assembled monolayers on Au by infrared attenuated total reflection spectroscopy. Applied Surface Science 2021, 559, 149883.
(50) Cano-Trujillo, C.; García-Ruiz, C.; Ortega-Ojeda, F. E.; Romolo, F.; Montalvo, G. Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review. Analytica Chimica Acta 2023, 341841.
(51) Hikima, Y.; Morikawa, J.; Kazarian, S. G. Analysis of molecular orientation in polymeric spherulite using polarized micro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. Analytica Chimica Acta 2019, 1065, 79-89.
(52) Zhang, X.; Hou, L.; Liu, H.; Chang, L.; Lv, S.; Niu, B.; Zheng, J.; Liu, S.; Fu, J. Hollow polyphosphazene microcapsule with rigid-flexible coupling cationic skeletons for highly efficient and selective adsorption of anionic dyes from water. Applied Surface Science 2023, 626, 157234.
(53) Zhou, H.; Li, J.; Li, H.; Liu, H.; Wang, X.; Du, X. Controlled construction of 2D hierarchical core-shell ZnO/MnO2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta 2024, 342402.
(54) Tsai, D.-H.; DelRio, F. W.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir 2010, 26 (12), 10325-10333.
(55) Tsai, D.-H.; Davila-Morris, M.; DelRio, F. W.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance–Fourier transform infrared spectroscopy. Langmuir 2011, 27 (15), 9302-9313.
(56) Gale, G. W.; Rath, D. L.; Cooper, E. I.; Estes, S.; Okorn-Schmidt, H. F.; Brigante, J.; Jagannathan, R.; Settembre, G.; Adams, E. Enhancement of semiconductor wafer cleaning by chelating agent addition. Journal of the Electrochemical Society 2001, 148 (9), G513.
(57) Moldovan, C.; Iosub, R.; Dascalu, D.; Nechifor, G. Anisotropic etching of silicon in a complexant redox alkaline system. Sensors and Actuators B: Chemical 1999, 58 (1-3), 438-449.
(58) Lai, S.-M.; Chen, Y.-Y.; Liu, C.-P.; Hsieh, C.-K.; Lin, J.-Y. Degradation of inhibitor in alkaline cleaning solution for post-Cu CMP cleaning. Surface and Coatings Technology 2018, 350, 1080-1084.
(59) Zubel, I.; Kramkowska, M.; Rola, K. Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives. Sensors and Actuators A: Physical 2012, 178, 126-135.
(60) Liu, L.; Myasishchev, D.; Kuryatkov, V.; Nikishin, S.; Harris, H.; Holtz, M. TMAH wet etching of silicon micro-and nano-fins for selective sidewall epitaxy of III-Nitride semiconductors. Materials Processing Fundamentals 2016, 185-192.
(61) Chiu, Y.-D.; Dow, W.-P. Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. Journal of The Electrochemical Society 2013, 160 (12), 3021.
(62) Xie, B.-G.; Sun, J.-J.; Chen, X.-B.; Chen, J.-H.; Xiang, T.-L.; Chen, G.-N. In situ monitoring of additives in copper plating baths by cyclic voltammetric stripping with a microelectrode. Journal of The Electrochemical Society 2007, 154 (10), 516.
(63) Pasquale, M.; Gassa, L. M.; Arvia, A. J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochimica Acta 2008, 53 (20), 5891-5904.
(64) Tsai, D.-H.; Shelton, M. P.; DelRio, F. W.; Elzey, S.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles. Analytical and bioanalytical chemistry 2012, 404, 3015-3023.
(65) Tsai, D.-H.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 2011, 27 (6), 2464-2477.
(66) Guha, S.; Li, M.; Tarlov, M. J.; Zachariah, M. R. Electrospray–differential mobility analysis of bionanoparticles. Trends in biotechnology 2012, 30 (5), 291-300.
(67) Kazarian, S. G.; Chan, K. A. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 2013, 138 (7), 1940-1951.
(68) Wiedensohler, A. An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of aerosol science 1988, 19 (3), 387-389.
(69) Elzey, S.; Tsai, D.-H.; Yu, L. L.; Winchester, M. R.; Kelley, M. E.; Hackley, V. A. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry 2013, 405 (7), 2279-2288.
(70) Tai, J.-T.; Lai, Y.-C.; Yang, J.-H.; Ho, H.-C.; Wang, H.-F.; Ho, R.-M.; Tsai, D.-H. Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Analytical Chemistry 2015, 87 (7), 3884-3889.
(71) Chang, W.-C.; Cheng, S.-C.; Chiang, W.-H.; Liao, J.-L.; Ho, R.-M.; Hsiao, T.-C.; Tsai, D.-H. Quantifying surface area of nanosheet graphene oxide colloid using a gas-phase electrostatic approach. Analytical Chemistry 2017, 89 (22), 12217-12222.
(72) Wang, H.-L.; Huang, C.-P.; Su, C.-H.; Tsai, D.-H. A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Analytical and Bioanalytical Chemistry 2019, 411 (7), 1443-1451.
(73) Tsai, D.-H.; Cho, T. J.; DelRio, F. W.; Taurozzi, J.; Zachariah, M. R.; Hackley, V. A. Hydrodynamic fractionation of finite size gold nanoparticle clusters. Journal of the American Chemical Society 2011, 133 (23), 8884-8887.
(74) Tsai, D.-H.; Elzey, S.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; Clogston, J. D.; MacCuspie, R. I.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Tumor necrosis factor interaction with gold nanoparticles. Nanoscale 2012, 4 (10), 3208-3217.
(75) Tsai, D.-H.; Cho, T. J.; DelRio, F. W.; Gorham, J. M.; Zheng, J.; Tan, J.; Zachariah, M. R.; Hackley, V. A. Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. Langmuir 2014, 30 (12), 3397-3405.
(76) Leopold, L. F.; Tódor, I. S.; Diaconeasa, Z.; Rugină, D.; Ştefancu, A.; Leopold, N.; Coman, C. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 532, 70-76.
(77) Zhang, X.; Servos, M. R.; Liu, J. Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. Journal of the American Chemical Society 2012, 134 (24), 9910-9913.
(78) Tsai, D.-H.; Pease III, L. F.; Zangmeister, R.; Tarlov, M. J.; Zachariah, M. Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis. Langmuir 2009, 25 (1), 140-146.
(79) Ejeta, S. Y.; Imae, T. Selective colorimetric and electrochemical detections of Cr (III) pollutant in water on 3-mercaptopropionic acid-functionalized gold plasmon nanoparticles. Analytica Chimica Acta 2021, 1152, 338272.
(80) Sakellari, G. I.; Hondow, N.; Gardiner, P. H. Factors influencing the surface functionalization of citrate stabilized gold nanoparticles with cysteamine, 3-mercaptopropionic acid or l-selenocystine for sensor applications. Chemosensors 2020, 8 (3), 80.
(81) Zhang, Z.; Christopher, G. F. The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter 2015, 11 (13), 2596-2603.
(82) Neuman, M. G.; Nanau, R. M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic acid and wound healing. Journal of pharmacy & pharmaceutical sciences 2015, 18 (1), 53-60.
(83) Wang, H.-L.; Huang, C.-P.; Su, C.-H.; Tsai, D.-H. A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Analytical and bioanalytical chemistry 2019, 411, 1443-1451.
(84) De Boulle, K.; Glogau, R.; Kono, T.; Nathan, M.; Tezel, A.; Roca-Martinez, J.-X.; Paliwal, S.; Stroumpoulis, D. A review of the metabolism of 1, 4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatologic Surgery 2013, 39 (12), 1758-1766.
(85) Liu, D.; Cito, S.; Zhang, Y.; Wang, C.-F.; Sikanen, T. M.; Santos, H. A. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Advanced Materials 2015, 27 (14), 2298-2304.
(86) Sung, Y.-H.; Wu, C.-L.; Huang, J.-H.; Tsai, D.-H. Real-Time Quantifying Microdroplet Synthesis of Metal–Organic Framework Colloids Using Gas-Phase Electrophoresis. Analytical Chemistry 2023, 95 (9), 4513-4520.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *