帳號:guest(3.15.29.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許舒淮
作者(外文):Hsu, Shu-Huai
論文名稱(中文):以熱處理與添加奈米碳管改善聚乙烯熱擴散性研究
論文名稱(外文):Thermal diffusivity improvement of polyethylene by heat treatment and addition of carbon nanotubes
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
口試委員(中文):連德軒
許景棟
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:111031532
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:46
中文關鍵詞:熱擴散熱處理聚乙烯奈米碳管
外文關鍵詞:Thermal diffusivityheat treatmentpolyethylenecarbon nanotubes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以熱處理與添加多壁奈米碳管兩種方法來提升高密度聚乙烯(High-density polyethylene, HDPE)和聚乙烯(Polyethylene)的散熱性能。藉由熱處理提升HDPE結晶度(Crystallinity)來增進熱傳性,稱為本質性的改善。添加多壁奈米碳管於聚乙烯製成複合材料並進行熱處理,進而觀察摻雜濃度與熱處理對聚合物散熱性能的影響。兩種方式皆藉由改變聲子平均自由路徑,以改善材料散熱性能。
由 DSC&TGA 的數據可得高密度聚乙烯結晶速率與溫度關係圖,推論影響結晶度的兩個關鍵參數為「冷卻速率」和「持溫時間」,藉此可進一步觀察高分子結晶度對熱擴散係數的影響。實驗結果顯示在相同熱處理溫度與時間(120°C,1hr),冷卻速率愈快,對熱擴散係數下降的幅度愈大,在冷卻速率快至24°C/s下降可達19.4%,由此可知冷卻速率的快慢可以有效影響結晶性。當溫度固定時(結晶溫度:110°C,爐冷卻),持溫時間愈久可提升熱擴散係數的幅度越大,最大者達約19% (24 h)。持溫32 和 48 h,則因為發生降解現象,故提升幅度較小。
在聚乙烯中添加多壁奈米碳管,實驗結果顯示添加量愈多,愈有助於散熱,在添加5 w.t%的多壁奈米碳管可提升熱擴散係數達 27%。對奈米碳管與高分子複合材料進一步作熱處理可提升碳管分散性,而分散性提高反而造成聲子傳遞熱時的異質介面增加,降低熱擴散係數約10%。
Phonon mean free path and thermal diffusivity of high-density polyethylene (HDPE) are significantly improved by heat treatment. DSC and TGA data reveal that improved thermal diffusivity is because of increased crystallinity and crystallization kinetic is controlled by cooling rate and duration of heat treatment; both affect thermal diffusivity by 19%. Improvement become insignificant as heat treatment proceeds over 24 h, attributable to polymer degradation. Addition of multi-walled carbon nanotubes (MWCNTs) into PE produces nanocomposites with thermal diffusivity promoted by 27% at filling fraction of 5w.t%. Application of heat treatment to MWCNTs-PE composites however reduces thermal diffusivity to a value slightly greater than pure PE and underling mechanism involves tube redispersion created interfaces where heat resistance forms.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 前言與研究動機 1
1.1 前言 1
1.2 研究動機與背景 1
第二章 理論說明與文獻回顧 3
2.1 高分子材料與聚乙烯 3
2.1.1 高分子材料 3
2.1.2 聚乙烯 4
2.2 熱擴散與熱傳導係數應用與比較 5
2.3 熱處理改善結晶度與散熱性 7
2.3.1 聲子平均自由路徑 7
2.3.2 熱處理與結晶度關係 8
2.3.3 結晶速率溫度關係圖 9
2.4 多壁奈米碳管-聚乙烯複合材料 10
2.4.1 奈米碳管 10
2.4.2 奈米碳管結構 10
2.4.3 奈米碳管熱性質 12
2.4.4 奈米碳管複合材料散熱性 13
第三章 研究方法 15
3.1 實驗藥品與器材 15
3.2 實驗流程圖 16
3.3 實驗步驟 17
3.3.1 高密度聚乙烯製作 17
3.3.2 以熱處理改善高密度聚乙烯的熱擴散係數 18
3.3.2.1 冷卻速率影響 18
3.3.2.2 熱處理時間影響 19
3.3.3 多壁奈米碳管-聚乙烯複合材料製作 19
3.4 量測分析 21
3.4.1 熱重量分析儀 21
3.4.2 熱示差掃描熱分析儀 22
3.4.3 雷射閃光法熱擴散係數分析儀 23
3.4.4 共軛聚焦顯微拉曼光譜儀 24
3.4.5 掃描式電子顯微鏡 25
第四章 實驗結果與討論 26
4.1 高密度聚乙烯的熱擴散係數量測 26
4.1.1 熱重分析與熱示差掃描分析 26
4.1.2 冷卻速率對熱擴散係數的影響 28
4.1.3 熱處理時間對熱擴散係數的影響 30
4.1.4 結晶度量測 31
4.1.4.1 透明度與結晶度 31
4.1.4.2 DSC量測結晶度 33
4.1.4.3 拉曼光譜量測結晶度 34
4.2 多壁奈米碳管-聚乙烯複合材料的熱擴散係數量測 36
4.2.1 熱擴散係數量測 36
4.2.2 以熱處理改善多壁奈米碳管分散性-SEM分析 37
4.2.3 以熱處理改善多壁奈米碳管分散性的熱擴散係數 39
第五章 結論 40
附錄 41
參考文獻 42
參考文獻
[1] 陳澄河, "創造無限可能的高分子材料," 科學發展, vol. 389, pp. 58-63, 2005.
[2] 陳澄河, "無所不在的高分子材料," 科學發展, vol. 559, pp. 04-05, 2019.
[3] Heat-tech. "主要材料的比重,比熱,導熱係數." https://heater.heat-tech.biz/tc/infrared-panel-heater/science-of-the-infrared-rays/7747.html (accessed 0506, 2024).
[4] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids / by H. S. Carslaw and J. C. Jaeger, 2d ed. Oxford: Clarendon Press, 1959.
[5] M. Temming. "A chip made with carbon nanotubes, not silicon, marks a computing milestone." ScienceNews. https://www.sciencenews.org/article/chip-carbon-nanotubes-not-silicon-marks-computing-milestone (accessed 0421, 2024).
[6] M. S. Dresselhaus and P. C. Eklund, "Phonons in carbon nanotubes," Advances in Physics, vol. 49, no. 6, pp. 705-814, 2000/09/01 2000, doi: 10.1080/000187300413184.
[7] J. Hone, "Phonons and thermal properties of carbon nanotubes," in Carbon nanotubes: synthesis, structure, properties, and applications: Springer, 2001, pp. 273-286.
[8] W. Yi, L. Lu, Z. Dian-Lin, Z. Pan, and S. Xie, "Linear specific heat of carbon nanotubes," Physical Review B, vol. 59, no. 14, p. R9015, 1999.
[9] J. R. Lukes and H. Zhong, "Thermal conductivity of individual single-wall carbon nanotubes," 2007.
[10] A. Salazar, "On thermal diffusivity," (in English), Eur. J. Phys., Article vol. 24, no. 4, pp. 351-358, Jul 2003, Art no. Pii s0143-0807(03)55905-0, doi: 10.1088/0143-0807/24/4/353.
[11] G. Yang, A. D. Migone, and K. W. Johnson, "Relationship between thermal diffusivity and mean free path," American Journal of Physics, vol. 62, no. 4, pp. 370-372, 1994, doi: 10.1119/1.17580.
[12] -. 周文英, -. 王蕴, -. 曹国政, -. 曹丹, -. 李婷, and -. 张祥林, "- 本征导热高分子材料研究进展," - 复合材料学报, vol. - 38, no. - 7, pp. - 2038, - 2021-01-18 2021, doi: - 10.13801/j.cnki.fhclxb.20210312.001.
[13] Y. Jia, Z. Mao, W. Huang, and J. Zhang, "Effect of temperature and crystallinity on the thermal conductivity of semi-crystalline polymers: A case study of polyethylene," Materials Chemistry and Physics, vol. 287, p. 126325, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.matchemphys.2022.126325.
[14] 林秉澤, "剪應力對左旋聚乳酸結晶行為之影響," 國立臺灣大學, 2012. [Online]. Available: https://doi.org/10.6342%2fNTU.2012.02230
[15] 蔡蘊明教授. "完美的聚合物晶體." https://highscope.ch.ntu.edu.tw/wordpress/?p=52090 (accessed 0402, 2024).
[16] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991/11/01 1991, doi: 10.1038/354056a0.
[17] G. D. Mildred S. Dresselhaus, Phaedon Avouris, Carbon Nanotubes,Synthesis, Structure, Properties, and Applications. 2001.
[18] NANOTECOL. " Carbon Nanotubes Material Safety Data Sheet." (accessed.
[19] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Structure and Electronic Properties of Carbon Nanotubes," The Journal of Physical Chemistry B, vol. 104, no. 13, pp. 2794-2809, 2000/04/01 2000, doi: 10.1021/jp993592k.
[20] R. Vidu, M. Rahman, M. Mahmoudi, M. Enachescu, T. D. Poteca, and I. Opris, "Nanostructures: a platform for brain repair and augmentation," (in English), Frontiers in Systems Neuroscience, Review vol. 8, 2014-June-20 2014, doi: 10.3389/fnsys.2014.00091.
[21] R. E. Smalley, "Carbon nanotubes: synthesis, structure, properties, and applications," 2003.
[22] 馬振基, 高分子複合材料. 國立編譯館, 2009.
[23] E. T. Thostenson, Z. F. Ren, and T. W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," (in English), Compos. Sci. Technol., Review vol. 61, no. 13, pp. 1899-1912, 2001, doi: 10.1016/s0266-3538(01)00094-x.
[24] M. Paradise and T. Goswami, "Carbon nanotubes - Production and industrial applications," (in English), Mater. Des., Article vol. 28, no. 5, pp. 1477-1489, 2007, doi: 10.1016/j.matdes.2006.03.008.
[25] M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, "Nanotubes: A revolution in materials science and electronics," in Fullerenes and Related Structures, vol. 199, A. Hirsch Ed., (Topics in Current Chemistry-Series. Berlin: Springer-Verlag Berlin, 1999, pp. 189-234.
[26] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, "Thermal conductance of an individual single-wall carbon nanotube above room temperature," (in eng), Nano Lett, vol. 6, no. 1, pp. 96-100, 2006/01// 2006, doi: 10.1021/nl052145f.
[27] 許景棟, "奈米碳管的聲子,吸附性質及其新穎的合成技術," 博士, 材料科學工程學系, 國立清華大學, 新竹市, 2008. [Online]. Available: https://hdl.handle.net/11296/x8v597
[28] 鄧. 黃. 馬振基;, "奈米碳管之分散及表面官能基化技術," 化工資訊與商情, vol. 75 2009.09[民98.09], p. 26~36, 2009.
[29] 劉宣佑, "使用熱處理改善奈米碳管/環氧樹脂複合材之分散性," 碩士, 新竹市, 國立清華大學, 材料科學工程學系, 2013. [Online]. Available: https://hdl.handle.net/11296/353jnz
[30] TechMax. "熱分析-STA TGA熱重分析儀與STA同步式熱重熱示差掃描分析儀的原理及應用介紹." https://www.techmaxasia.com/knowledge-detail/STA-20210217/ (accessed 0325, 2024).
[31] S. TAIWAN. "淺談熱重分析儀技術原理." https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-22.html (accessed 0325, 2024).
[32] TechMax. "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹." https://www.techmaxasia.com/knowledge-detail/DSC-20210208/ (accessed 0421, 2024).
[33] NETZSCH. "DIFFERENTIAL SCANNING CALORIMETRY,DSC 3500 Sirius,Differential Scanning Calorimeter " https://analyzing-testing.netzsch.com/en/products/differential-scanning-calorimeter-dsc-differential-thermal-analyzer-dta/dsc-3500-sirius (accessed 0421, 2024).
[34] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, "Pure carbon nanoscale devices: Nanotube heterojunctions," (in English), Phys. Rev. Lett., Article vol. 76, no. 6, pp. 971-974, Feb 1996, doi: 10.1103/PhysRevLett.76.971.
[35] J. Fischer, G. M. Wallner, and A. Pieber, "Spectroscopical investigation of Ski base materials," in 17th European Symposium on Polymer Spectroscopy (ESOPS 17), Seggauberg, AUSTRIA, Sep 09-12 2007, vol. 265, WEINHEIM: Wiley-V C H Verlag Gmbh, 2008, pp. 28-36, doi: 10.1002/masy.200850504. [Online]. Available: ://WOS:000256716900005
[36] T. Furukawa et al., "Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by Raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry," (in English), Polym. J., Article vol. 38, no. 11, pp. 1127-1136, 2006, doi: 10.1295/polymj.PJ2006056.
[37] F. Rull, A. C. Prieto, J. M. Casado, F. Sobron, and H. G. M. Edwards, "Estimation of crystallinity in polyethylene by Raman spectroscopy," Journal of Raman Spectroscopy, vol. 24, no. 8, pp. 545-550, 1993/08/01 1993, doi: https://doi.org/10.1002/jrs.1250240813.
[38] A. Nanakoudis. "SEM: Types of Electrons and the Information They Provide." https://www.thermofisher.com/blog/materials/sem-signal-types-electrons-and-the-information-they-provide/ (accessed 0325, 2024).
[39] S. Kumar and R. Singh, "Thermolysis of high-density polyethylene to petroleum products," Journal of Petroleum Engineering, vol. 2013, pp. 1-7, 2013.
[40] P. C. Ltd. "Application and End Uses / POLYTHENE " Polyester Converters Ltd. https://web.archive.org/web/20130605113814/http://www.polyesterconverters.com/pcl_apps/stage1/stage2/applications_and_enduses/polyethene.htm (accessed 0326, 2024).
[41] C. C. Li, C. L. Lu, Y. T. Lin, B. Y. Wei, and W. K. Hsu, "Creation of interfacial phonons by carbon nanotube-polymer coupling," (in English), Phys. Chem. Chem. Phys., Article vol. 11, no. 29, pp. 6034-6037, 2009, doi: 10.1039/b908166f.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *