帳號:guest(18.117.138.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪譽珉
作者(外文):Hong, Yu-Min
論文名稱(中文):降低雷達截面積之新策略
論文名稱(外文):New Strategies for Reduction of Radar Cross - Section
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
口試委員(中文):嚴大任
謝育民
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:111031530
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:雷達反射截面積電磁波屏蔽奈米碳管複合材料碳黑
外文關鍵詞:Radar Cross-SectionElectromagnetic Wave ShieldingCarbon NanotubesComposite MaterialsCarbon Black
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究透過三種不同策略來降低雷達截面積,分別為孔狀複合材料、可捕捉雷達波之金屬片陣列及玻璃纖維-金屬網製備之多角度雷達波損失複合材料。三種策略之電磁波屏蔽效果是採用美國海軍實驗室所發展的NRL Arch Method進行分析與量測。
孔狀複合材料具有輕量化、成本低且製作簡單等優點,若材料自由電子達到一定頻率時,電磁波可在孔狀結構內進行多重散射達到更大的電磁波反射損耗(Reflection Loss, RL)。本實驗以PU泡綿及尼龍纖維不織布作為基材,利用浸塗和噴塗的方式將多壁奈米碳管與碳黑與PU結合製成孔狀複合材料,並探討試片厚度、碳濃度、奈米碳管官能基化、摻硼等方式改質,找出RL最佳的配方。
可捕捉雷達波之金屬片陣列是透過特殊結構設計來屏蔽電磁波,此結構可降低雷達截面積(Radar Cross Section, RCS)與提升RL,是一種具潛力且低成本的方式,藉由調整規則排列金屬片的角度及開口方向探討RL的變化。
多角度雷達波損失複合材料是透過玻璃纖維與金屬網結合所形成之三明治複合材料,透過不同網孔大小、奈米碳管的添加以及不同角度的樣品放置來探討電磁波RL的機制,且可以大幅增強複合材料的機械性質。
Three distinct strategies are developed to reduce radar reflection cross-section (RCS), including (i) multi-scattering by carbon-based porous composites, (ii) electromagnetic radiation trapping by arrays of metal strips arranged in different angles and (iii) multi-angles reflection loss (RL) by glass fibers/metal mesh made polymer composites. We analyze the electromagnetic wave shielding effectiveness of these materials using the arch method developed by the U.S. Naval Research Laboratory (NRL).
The (i) is made by coating or spraying carbon nanotubes (CNTs) and carbon blacks (CBs) onto porous polymers such as PU and nylon fibers and exhibits advantages such as lightweight, low cost, and facile fabrication. The (ii) gives a large RL and is a special design for structures that are constantly exposed to radiation. This approach shows potential and low cost, and we investigate variations in RL by adjusting angles and orientation of the metal strips. The (iii) is a sandwich composite and the RL mechanism is characterized through varying mesh pore sizes and addition of CNTs/CBs.
摘要i
Abstractii
致謝iii
目錄iv
圖目錄vii
表目錄xi
第一章 文獻回顧1
1.1 電磁波屏蔽材料種類1
1.1.1 介電損耗型材料1
1.1.2 磁損耗型材料3
1.1.3 電阻損耗型材料3
1.2 遠場與近場電磁波4
1.3 電磁波屏蔽理論4
1.3.1 反射損耗7
1.3.2 吸收損耗8
1.3.3 多重反射損耗8
1.3.4 干涉型損耗9
1.4 雷達反射截面積10
1.5 奈米碳管簡介13
1.5.1 奈米碳管結構13
1.5.2 奈米碳管電子結構15
1.5.3 奈米碳管介電性17
1.6 碳黑簡介18
1.7 玻璃纖維簡介19
1.8 紅外線搜尋追蹤系統20
1.9 複合材料的電磁波屏蔽21
第二章 研究動機22
第三章 實驗步驟與原理24
3.1 藥品與儀器24
3.1.1 藥品與耗材24
3.1.2 製程設備與量測儀器25
3.2 實驗流程圖26
3.2.1 孔狀複合材料26
3.2.1.1 PU泡綿26
3.2.1.2 尼龍纖維不織布27
3.2.2 玻璃纖維與金屬網複合材料28
3.3 實驗步驟29
3.3.1 孔狀複合材料之製備29
3.3.1.1 奈米碳管/碳黑/尼龍纖維不織布複合材料的製備29
3.3.1.2 奈米碳管/碳黑/改質碳管/PU泡綿複合材料的製備30
3.3.1.3 改質奈米碳管(官能基化)33
3.3.1.4 摻硼奈米碳管33
3.3.2 規則排列之金屬片矩陣製備33
3.3.3 玻璃纖維與金屬網複合材料之製備34
3.4 實驗量測與分析36
3.4.1 電磁波吸收性能量測36
3.4.2 四點探針量測39
3.4.3 掃描式電子顯微鏡42
3.4.4 紅外線熱影像儀42
第四章 結果與討論44
4.1 孔狀複合材料44
4.1.1 掃描式電子顯微鏡影像44
4.1.2 電性量測52
4.1.3 反射損耗量測54
4.1.3.1 PU泡綿之厚度與添加物濃度種類對反射損耗的影響55
4.1.3.2 改質奈米碳管對反射損失影響57
4.1.3.3 使用不同基材之尼龍纖維不織布對反射損失影響57
4.1.3.4 PU泡綿與尼龍纖維不織布之反射損耗比較58
4.1.4 遠紅外線屏蔽測試60
4.2 金屬片矩陣的電磁波屏蔽效應65
4.2.1 反射損耗量測67
4.3 玻璃纖維與金屬網複合材料69
4.3.1 反射損耗量測70
4.3.1.1 金屬網網孔尺寸與角度對反射損失之影響71
4.3.1.2 添加奈米碳管於玻璃纖維與金屬網複合材料對反射損失之影響75
第五章 結論78
參考文獻79

1.White, D.R., A Handbook on Electromagnetic shielding materials and performance. (No Title), 1980.
2.Chen, L.-F., et al., Microwave electronics: measurement and materials characterization. 2004: John Wiley & Sons.
3.Vinoy, K.J. and R.M. Jha, Radar absorbing materials: from theory to design and characterization. 1996.
4.Liu, H.-T., et al., Microwave absorption properties of polyester composites incorporated with heterostructure nanofillers with carbon nanotubes as carriers. Chinese Physics Letters, 2015. 32(4): p. 044102.
5.邢麗英, 隱形材料. 2006: 新文京開發.
6.Callister, W.D. and D.G. Rethwisch, Materials science and engineering. ninth ed. 2015: John Wiley.
7.Quan, B., et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective. Journal of Alloys and Compounds, 2017. 728: p. 1065-1075.
8.Zhang, H., et al., Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. Journal of Applied Physics, 2009. 105(5).
9.Fan, Z., et al., Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B, 2006. 132(1-2): p. 85-89.
10.Schelkunoff, S.A., On diffraction and radiation of electromagnetic waves. Physical Review, 1939. 56(4): p. 308.
11.Paul, C.R., R.C. Scully, and M.A. Steffka, Introduction to electromagnetic compatibility. 2022: John Wiley & Sons.
12.White, D.R., Electromagnetic Interference and Compatibility. Third Edition ed. 1981: Don White Consultants.
13.David Cheng, K., Field and wave electromagnetic. 4th ed. 1991: Addison-Wesley Publishing Company.
14.程雋, 電磁波理論. 2009: 文笙.
15.李長綱, 電磁學與電磁波的理論及應用. 2007: 鼎茂.
16.Xu, J., et al., Evaluations of plasma stealth effectiveness based on the probability of radar detection. IEEE Transactions on Plasma Science, 2017. 45(6): p. 938-944.
17.Kaiser, K.L., Electromagnetic shielding. 2005: Crc Press.
18.Wang, B., et al., Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. Journal of Magnetism and Magnetic Materials, 2011. 323(8): p. 1101-1103.
19.Tong, G., et al., Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. Journal of Alloys and Compounds, 2011. 509(2): p. 451-456.
20.吳志勇, 羰基鐵粉之吸波特性研究, in 材料科學與工程碩士班. 2012, 國防大學理工學院: 桃園縣. p. 81.
21.Knott, E.F., J.F. Schaeffer, and M.T. Tulley, Radar cross section. 2004: SciTech Publishing.
22.RFCafe. RADAR CROSS SECTION (RCS). Available from: https://www.rfcafe.com/references/electrical/ew-radar-handbook/radar-cross-section.htm.
23.Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
24.Dresselhaus, M.S., et al., Carbon nanotubes. 2000: Springer.
25.Prylutskyy, Y.I., et al., Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Computational Materials Science, 2000. 17(2-4): p. 352-355.
26.Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical review B, 1999. 59(4): p. R2514.
27.Nikolaev, P., et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical physics letters, 1999. 313(1-2): p. 91-97.
28.Endo, M., et al., Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004. 362(1823): p. 2223-2238.
29.Odom, T.W., et al., Structure and electronic properties of carbon nanotubes. 2000, ACS Publications. p. 2794-2809.
30.Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Elsevier.
31.Saito, R., et al., Electronic structure of chiral graphene tubules. Applied physics letters, 1992. 60(18): p. 2204-2206.
32.Dresselhaus, G., M.S. Dresselhaus, and R. Saito, Physical properties of carbon nanotubes. 1998: World scientific.
33.Dresselhaus, M. and P. Eklund, Phonons in carbon nanotubes. Advances in physics, 2000. 49(6): p. 705-814.
34.Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Physical review letters, 1992. 68(10): p. 1579.
35.Dresselhaus, M., G. Dresselhaus, and A. Jorio, Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res., 2004. 34: p. 247-278.
36.Chen, Y., et al., Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. Journal of Materials Chemistry A, 2014. 2(34): p. 14118-14126.
37.Ahmad, K., W. Pan, and S.-L. Shi, Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied physics letters, 2006. 89(13).
38.Donnet, J.-B., Carbon black: science and technology. 2018: Routledge.
39.Wang, M.J., et al., Carbon black. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
40.website, M.C. Three Main Properties of Carbon Black. 2006; Available from: http://www.carbonblack.jp/en/cb/tokusei.html.
41.asahicarbon.co. About carbon black. 2021; Available from: https://www.asahicarbon.co.jp/global_site/cb/outline.html.
42.Ramzan, E. and E. Ehsan, Effect of various forms of glass fiber reinforcements on tensile properties of polyester matrix composite. Fac. Eng. Technol, 2009. 16: p. 33-39.
43.Sathishkumar, T., S. Satheeshkumar, and J. Naveen, Glass fiber-reinforced polymer composites–a review. Journal of reinforced plastics and composites, 2014. 33(13): p. 1258-1275.
44.洪偉綸, 多壁奈米碳管/碳黑/羰基鐵複合材料之1-18 GHz電磁波吸收特性研究, in 材料科學工程學系. 2017, 國立清華大學: 新竹市. p. 85.
45.傅浩瑋, 多壁奈米碳管/碳黑/羰基鐵及玻璃纖維強化之抗 X-band 匿蹤複合材之研究, in 材料科學工程學系. 2019, 國立清華大學: 新竹市. p. 72.
46.Zhang, Y., et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater, 2015. 27(12): p. 2049-53.
47.Shen, B., et al., Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl Mater Interfaces, 2016. 8(12): p. 8050-7.
48.airframer. Lockheed Martin F-35 Lightning II. 2024; Available from: https://www.airframer.com/aircraft_detail.html?model=F-35_JSF.
49.Umari, M.H., et al., A free-space bistatic calibration technique for the measurement of parallel and perpendicular reflection coefficients of planar samples. IEEE Transactions on Instrumentation and Measurement, 1991. 40(1): p. 19-24.
50.Ramadan, A.A., R.D. Gould, and A. Ashour, On the Van der Pauw method of resistivity measurements. Thin solid films, 1994. 239(2): p. 272-275.
51.McEwan, A., et al. Electrode circuits for frequency-and code-division multiplexed impedance tomography. in 2007 IEEE Biomedical Circuits and Systems Conference. 2007. IEEE.
52.國科會精密儀器中心, 微機電系統技術與應用. 2005: 全華圖書
53.Mittra, R., C.H. Chan, and T. Cwik, Techniques for analyzing frequency selective surfaces-a review. Proceedings of the IEEE, 1988. 76(12): p. 1593-1615.
54.Pozar, D.M., Microwave engineering. Fourth Editions, University of Massachusetts at Amherst, John Wiley & Sons, Inc. 2012.

(此全文20290709後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *