|
1. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389. 2. Baig, N.; Kammakakam, I.; Falath, W., Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Materials Advances 2021, 2 (6), 1821-1871. 3. Remita, H.; Lampre, I., Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials 2024, 17 (2), 364. 4. Paras; Yadav, K.; Kumar, P.; Teja, D. R.; Chakraborty, S.; Chakraborty, M.; Mohapatra, S. S.; Sahoo, A.; Chou, M. M. C.; Liang, C. T.; Hang, D. R., A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials (Basel) 2022, 13 (1). 5. Sarma, D. D.; Kamat, P. V., 2023 Nobel Prize in Chemistry: A Mega Recognition for Nanosized Quantum Dots. ACS Energy Letters 2023, 8 (12), 5149-5151. 6. Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K., Colloidal Quantum Dots for Optoelectronics. Journal of Materials Chemistry A 2017, 5 (26), 13252-13275. 7. Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chemical Reviews 2015, 115 (23), 12732-12763. 8. Kwon, S. G.; Hyeon, T., Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods. Small 2011, 7 (19), 2685-2702. 9. Kwon, S. G.; Hyeon, T., Kinetics of Colloidal Chemical Synthesis of Monodisperse Spherical Nanocrystals. In Nanoscale Materials in Chemistry, 2009; 127-153. 10. Thanh, N. T. K.; Maclean, N.; Mahiddine, S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews 2014, 114 (15), 7610-7630. 11. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition 2007, 46 (25), 4630-4660. 12. Ashley, M. J.; O’Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A., Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society 2016, 138 (32), 10096-10099. 13. Reddy, S. M.; Park, J. J.; Na, S.-M.; Maqableh, M. M.; Flatau, A. B.; Stadler, B. J. H., Electrochemical Synthesis of Magnetostrictive Fe–Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response. Advanced Functional Materials 2011, 21 (24), 4677-4683. 14. Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M., Heating-Sol–Gel Template Process for the Growth of TiO2 Nanorods with Rutile and Anatase Structure. Applied Surface Science 2004, 238 (1), 175-179. 15. Li, Z.; Kurtulus, Ö.; Fu, N.; Wang, Z.; Kornowski, A.; Pietsch, U.; Mews, A., Controlled Synthesis of CdSe Nanowires by Solution–Liquid–Solid Method. Advanced Functional Materials 2009, 19 (22), 3650-3661. 16. Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M., Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors. Journal of the American Chemical Society 2003, 125 (38), 11498-11499. 17. Kapoor, S.; Ahmad, H.; Julien, C. M.; Islam, S. S., Improved Ion-Diffusion Assisted Uniform Growth of 1D CdS Nanostructures for Enhanced Optical and Energy Storage Properties. Applied Surface Science 2020, 512, 145654. 18. Wagner, R. S.; Ellis, W. C., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89-90. 19. Wu, Y.; Yang, P., Direct Observation of Vapor−Liquid−Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123 (13), 3165-3166. 20. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122 (36), 8801-8802. 21. Miao, J.; Zhang, F., Recent Progress on Highly Sensitive Perovskite Photodetectors. Journal of Materials Chemistry C 2019, 7 (7), 1741-1791. 22. Abbaszadeh, S.; Allec, N.; Wang, K.; Karim, K. S., Low Dark-Current Lateral Amorphous-Selenium Metal–Semiconductor–Metal Photodetector. IEEE Electron Device Letters 2011, 32 (9), 1263-1265. 23. Wang, Y.; Zhang, X.; Jiang, Q.; Liu, H.; Wang, D.; Meng, J.; You, J.; Yin, Z., Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO2 Electron Transport Layer. ACS Applied Materials & Interfaces 2018, 10 (7), 6505-6512. 24. Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A. D.; Wu, T., Ambipolar Solution-Processed Hybrid Perovskite Phototransistors. Nature Communications 2015, 6 (1), 8238. 25. Petritz, R. L., Theory of Photoconductivity in Semiconductor Films. Physical Review 1956, 104 (6), 1508-1516. 26. Pan, A.; Zhu, X., 12 - Optoelectronic Properties of Semiconductor Nanowires. In Semiconductor Nanowires, Arbiol, J.; Xiong, Q., Eds. Woodhead Publishing: 2015; 327-363. 27. Kingston, R. H., Chapter 5 - Real Detectors: Vacuum Photodiodes and Photomultipliers, Photoconductors, Junction Photodiodes, and Avalanche Photodiodes. In Optical Sources, Detectors, and Systems, Kingston, R. H., Ed. Academic Press: Burlington, 1995; 97-122. 28. Bhattacharya, P.; Fornari, R.; Kamimura, H., Comprehensive semiconductor science and technology. 2011; 1-647. 29. Buschow, K. H. J.; Flemings, M. C.; Cahn, R., The Encyclopedia of Materials : Science and Technology. Elsevier: Amsterdam, 2001. 30. Ahmadi, M.; Wu, T.; Hu, B., A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials 2017, 29 (41), 1605242. 31. Xie, C.; Yan, F., Flexible Photodetectors Based on Novel Functional Materials. Small 2017, 13 (43), 1701822. 32. Tian, W.; Zhou, H.; Li, L., Hybrid Organic–Inorganic Perovskite Photodetectors. Small 2017, 13 (41), 1702107. 33. Miao, J.; Zhang, F., Recent Progress on Photomultiplication Type Organic Photodetectors. Laser & Photonics Reviews 2019, 13 (2), 1800204. 34. Jin, Z.; Zhou, Q.; Chen, Y.; Mao, P.; Li, H.; Liu, H.; Wang, J.; Li, Y., Graphdiyne:ZnO Nanocomposites for High-Performance UV Photodetectors. Advanced Materials 2016, 28 (19), 3697-3702. 35. Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V., Nanoscale Zinc Oxide Based Heterojunctions as Visible Light Active Photocatalysts for Hydrogen Energy and Environmental Remediation. Catalysis Reviews 2020, 62 (3), 346-405. 36. Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J., Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalysis Properties: A Review. Nanoscale 2013, 5 (18), 8326-8339. 37. Berini, P., Chapter 10 - Amplification and Lasing with Surface Plasmon Polaritons. In Handbook of Surface Science, Richardson, N. V.; Holloway, S., Eds. North-Holland: 2014; Vol. 4, 309-328. 38. Hou, W.; Cronin, S. B., A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials 2013, 23 (13), 1612-1619. 39. Murray, W. A.; Barnes, W. L., Plasmonic Materials. Advanced Materials 2007, 19 (22), 3771-3782. 40. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-Optics of Surface Plasmon Polaritons. Physics Reports 2005, 408 (3), 131-314. 41. Zhang, J.; Zhang, L.; Xu, W., Surface Plasmon Polaritons: Physics and Applications. Journal of Physics D: Applied Physics 2012, 45 (11), 113001. 42. Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles. Wiley New York: New York, 1983. 43. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908, 330 (3), 377-445. 44. Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 2002, 88 (7), 077402. 45. Nehl, C. L.; Liao, H.; Hafner, J. H., Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters 2006, 6 (4), 683-688. 46. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677. 47. Chou, C.-H.; Chen, F.-C., Plasmonic Nanostructures for Light Trapping in Organic Photovoltaic Devices. Nanoscale 2014, 6 (15), 8444-8458. 48. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S., Plasmon Resonances of Silver Nanowires with a Nonregular Cross Section. Physical Review B 2001, 64 (23), 235402. 49. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759. 50. Hao, E.; Schatz, G. C., Electromagnetic Fields Around Silver Nanoparticles and Dimers. The Journal of Chemical Physics 2004, 120 (1), 357-366. 51. Farsinezhad, S.; Banerjee, S. P.; Bangalore Rajeeva, B.; Wiltshire, B. D.; Sharma, H.; Sura, A.; Mohammadpour, A.; Kar, P.; Fedosejevs, R.; Shankar, K., Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au–TiO2 3D Nanocomposites. ACS Applied Materials & Interfaces 2017, 9 (1), 740-749. 52. Tandon, B.; Ghosh, S.; Milliron, D. J., Dopant Selection Strategy for High-Quality Factor Localized Surface Plasmon Resonance from Doped Metal Oxide Nanocrystals. Chemistry of Materials 2019, 31 (18), 7752-7760. 53. Ru, E. C. L.; Etchegoin, P. G. In Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects, 2008. 54. Li, K.-H.; Chen, X.-Y.; Su, D.; Song, Y.-J.; Zhou, H.-L.; Liu, Z.-G.; Xia, P.; Zhang, X.-Y., Design Strategies Toward Plasmon-Enhanced 2-Dimensional Material Photodetectors. Advanced Devices & Instrumentation 2023, 4, 0017. 55. Jiang, R.; Li, B.; Fang, C.; Wang, J., Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Advanced Materials 2014, 26 (31), 5274-5309. 56. Govorov, A. O.; Zhang, H.; Gun’ko, Y. K., Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules. The Journal of Physical Chemistry C 2013, 117 (32), 16616-16631. 57. Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J., A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12 (24), 4390. 58. Li, G.; Wang, Y.; Huang, L.; Sun, W., Research Progress of High-Sensitivity Perovskite Photodetectors: A Review of Photodetectors: Noise, Structure, and Materials. ACS Applied Electronic Materials 2022, 4 (4), 1485-1505. 59. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. 60. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I., Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356 (6345), 1376-1379. 61. Ling, Y.; Yuan, Z.; Tian, Y.; Wang, X.; Wang, J. C.; Xin, Y.; Hanson, K.; Ma, B.; Gao, H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials 2016, 28 (2), 305-311. 62. Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters 2014, 5 (8), 1421-1426. 63. Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; Niu, G.; Tang, J., Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Letters 2016, 16 (12), 7446-7454. 64. Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y.; Bao, Q., Two-Dimensional CH3NH3PbI3 Perovskite: Synthesis and Optoelectronic Application. ACS Nano 2016, 10 (3), 3536-3542. 65. Bhatt, V.; Kumar, M.; Yadav, P.; Kumar, M.; Yun, J.-H., Low Cost and Solution Processible Sandwiched CH3NH3PbI3-xClx Based Photodetector. Materials Research Bulletin 2018, 99, 79-85. 66. Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials 2015, 3 (10), 1389-1396. 67. MØLler, C. K., Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature 1958, 182 (4647), 1436-1436. 68. Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G., Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 2013, 13 (7), 2722-2727. 69. Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J.-M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J., Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano 2018, 12 (4), 3477-3486. 70. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696. 71. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H., A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics 2005, 98 (4). 72. Djurišić, A. B.; Ng, A. M. C.; Chen, X. Y., ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics 2010, 34 (4), 191-259. 73. Gupta, J.; Hassan, P. A.; Barick, K. C., Multifunctional ZnO Nanostructures: A Next Generation Nanomedicine for Cancer Therapy, Targeted Drug Delivery, Bioimaging, and Tissue Regeneration. Nanotechnology 2023, 34 (28). 74. Nadupalli, S.; Repp, S.; Weber, S.; Erdem, E., About Defect Phenomena in ZnO Nanocrystals. Nanoscale 2021, 13 (20), 9160-9171. 75. Li, L.; Gu, L.; Lou, Z.; Fan, Z.; Shen, G., ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. ACS Nano 2017, 11 (4), 4067-4076. 76. Rackauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G., ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials 2017, 7 (11), 381. 77. Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S., ZnO Nanorod Gas Sensor for Ethanol Detection. Sensors and Actuators B: Chemical 2012, 162 (1), 237-243. 78. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J., ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano Letters 2007, 7 (8), 2183-2187. 79. Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F., Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission. Advanced Materials 2006, 18 (24), 3275-3278. 80. Lin, C.-Y.; Lai, Y.-H.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Highly Efficient Dye-Sensitized Solar Cell with a ZnO Nanosheet-Based Photoanode. Energy & Environmental Science 2011, 4 (9), 3448-3455. 81. Rose, K.; Eldridge, S.; Chapin, L., The Internet of Things: An Overview. The internet society (ISOC) 2015, 80, 1-50. 82. Atzori, L.; Iera, A.; Morabito, G., The Internet of Things: A Survey. Computer Networks 2010, 54 (15), 2787-2805. 83. Swan, M., Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks 2012, 1 (3), 217-253. 84. Liu, X.; Lam, K. H.; Zhu, K.; Zheng, C.; Li, X.; Du, Y.; Liu, C.; Pong, P. W. T., Overview of Spintronic Sensors With Internet of Things for Smart Living. IEEE Transactions on Magnetics 2019, 55 (11), 1-22. 85. Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H., Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Applied Materials & Interfaces 2015, 7 (45), 25007-25013. 86. Xu, F.; Kong, X.; Wang, W.; Juan, F.; Wang, M.; Wei, H.; Li, J.; Cao, B., Quantum Size Effect and Surface Defect Passivation in Size-Controlled CsPbBr3 Quantum Dots. Journal of Alloys and Compounds 2020, 831, 154834. 87. Sun, M.; Fang, Q.; Zhang, Z.; Xie, D.; Sun, Y.; Xu, J.; Li, W.; Ren, T.; Zhang, Y., All-Inorganic Perovskite Nanowires–InGaZnO Heterojunction for High-Performance Ultraviolet–Visible Photodetectors. ACS Applied Materials & Interfaces 2018, 10 (8), 7231-7238. 88. Yang, Z.; Jiang, M.; Guo, L.; Hu, G.; Gu, Y.; Xi, J.; Huo, Z.; Li, F.; Wang, S.; Pan, C., A High Performance CsPbBr3 Microwire Based Photodetector Boosted by Coupling Plasmonic and Piezo-Phototronic Effects. Nano Energy 2021, 85, 105951. 89. Zeng, L.; Tao, L.; Tang, C.; Zhou, B.; Long, H.; Chai, Y.; Lau, S. P.; Tsang, Y. H., High-Responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports 2016, 6 (1), 20343. 90. Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H., Sensitive Solution-Processed Visible-Wavelength Photodetectors. Nature Photonics 2007, 1 (9), 531-534. 91. Zhao, Q.; Wang, W.; Carrascoso-Plana, F.; Jie, W.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R., The Role of Traps in the Photocurrent Generation Mechanism in Thin InSe Photodetectors. Materials Horizons 2020, 7 (1), 252-262. 92. Zhang, B. Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J., Broadband High Photoresponse from Pure Monolayer Graphene Photodetector. Nature Communications 2013, 4 (1), 1811. 93. Zhang, Z.-X.; Long-Hui, Z.; Tong, X.-W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L.-B.; Wu, Y.-C., Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe2/Perovskite Heterojunctions. The Journal of Physical Chemistry Letters 2018, 9 (6), 1185-1194. 94. Goswami, L.; Aggarwal, N.; Vashishtha, P.; Jain, S. K.; Nirantar, S.; Ahmed, J.; Khan, M. A. M.; Pandey, R.; Gupta, G., Fabrication of GaN Nano-Towers Based Self-Powered UV Photodetector. Scientific Reports 2021, 11 (1), 10859. 95. Nagal, V.; Kumar, V.; Rahman, S.; Kumar, K.; Singh, K.; Kumar, M.; Ahmad, R.; Hafiz, A. K., Insight into Hot Carrier Kinetics of CsPbBr3/ZnO Heterostructures for Photodetector Application. ACS Applied Optical Materials 2023, 1 (3), 779-787. 96. Du, S.; Li, G.; Cao, X.; Wang, Y.; Lu, H.; Zhang, S.; Liu, C.; Zhou, H., Oxide Semiconductor Phototransistor with Organolead Trihalide Perovskite Light Absorber. Advanced Electronic Materials 2017, 3 (4), 1600325. 97. He, J.; Qiao, K.; Gao, L.; Song, H.; Hu, L.; Jiang, S.; Zhong, J.; Tang, J., Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors. ACS Photonics 2014, 1 (10), 936-943. 98. Tsai, P.-H. Enhanced Performance Photodetector Based on Ag Nanoparticles / CsPbBr1.2 I1.8 Quantum Dots. National Tsinghua University, 2019. 99. Hsiao, Y.-C. Enhanced Performances of Photodetector Based on CsPbBr3 Nanocrystals by Forming Heterojunction with CsPbI3 Nanorods and Utilizing Localized Surface Plasmonic Effect of Gold Nanoparticles. National Tsinghua University, 2020. 100. Wang, H.; Kim, D. H., Perovskite-Based Photodetectors: Materials and Devices. Chemical Society Reviews 2017, 46 (17), 5204-5236. 101. Rohizat, N. S.; Ripain, A. H. A.; Lim, C. S.; Tan, C. L.; Zakaria, R., Plasmon-Enhanced Reduced Graphene Oxide Photodetector with Monometallic of Au and Ag Nanoparticles at VIS–NIR Region. Scientific Reports 2021, 11 (1), 19688.
|