帳號:guest(18.222.107.27)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭向澤
作者(外文):Cheng, Hsiang-Tse
論文名稱(中文):基於CsPbBr3奈米晶體與ZnO奈米線異質結構及金奈米粒子局域表面電漿共振之光感測器
論文名稱(外文):Photodetector Based on CsPbBr3 Nanocrystals and ZnO Nanowires Heterostructure with Localized Surface Plasmonic Effect of Gold Nanoparticles
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):呂明諺
吳文偉
口試委員(外文):Lu, Ming-Yen
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:111031520
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:83
中文關鍵詞:鈣鈦礦氧化鋅局域表面電漿共振光感測器
外文關鍵詞:PerovskiteZnOLSPRPhotodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的不斷演進,光感測器在日常生活中變得不可或缺。光感測器是一種能夠將光訊號轉換成電訊號的一種裝置,而它們的應用範圍遍及了各個領域,包括醫療監測、光學通訊、目標檢測,以及新興領域,如自駕車、機器人和無人機等。近年來,有機鹵素鈣鈦礦(ABX3,其中A = 有機陽離子,B = 鉛原子,C =鹵素)因其擁有長電荷載子壽命、載子遷移率高、可見光波段內高吸收係數等材料特性,而在光電元件領域受到了廣泛關注。然而,儘管有機鹵素鈣鈦礦在眾多領域擁有了顯著進展,但其發展主要面臨的是有機材料中的有機陽離子部分容易受到潮濕、溫度和光的影響,容易分解,使其在長期應用上遇到了阻礙。
本研究中,我們透過了熱注入法以及氣態-液態-固態成長機制製備了CsPbBr3奈米晶體以及ZnO奈米線,光感測器則透過簡易的離心鑄造所製成,並對元件的光電性能進行了全面分析。其中,ZnO奈米線在元件中是作為載子的遷移層,促進了電子電洞對的有效分離,而CsPbBr3奈米晶體則是作為光吸收層,並透過在元件中引入金奈米顆粒以達到局域性表面電漿共振效應。
研究結果顯示,在異質接面以及局域性表面電漿共振效應的作用下, CsPbBr3奈米晶體/ZnO奈米線光感測器的偵測率以及響應度可達4.22×10^-2 A/W及1.21×10^-11 Jones,並擁有迅速的響應時間,上升及下降時間分別為34毫秒及35毫秒。此外,該光感測器在90天後仍能保持良好的穩定性。
With advancements in technology, photodetectors have evolved into mature devices capable of converting optical signals into electrical information. Their applications span various fields, including optical communication, medical monitoring, target detection, and emerging areas like autonomous vehicles, drones, and robots. Hybrid organolead halide perovskites, denoted as ABX3, A representing the organic cation, B representing Pb, and C representing halide anions, have garnered significant attention due to their material characteristics including long carrier diffusion length, strong light absorption, high carrier mobility, and the feasibility of low-temperature synthesis, rendering it highly suitable for various photoelectronic device applications. Nevertheless, the durability of these hybrid organolead halide perovskites have been a limiting factor for their long-term application in practice.
In the present study, CsPbBr3 nanocrystals were synthesized successfully using a hot injection technique, while ZnO nanowires were synthesized through the vapor–liquid–solid (VLS) method. A perovskite-based photodetector was constructed through a simple centrifugal casting technique, and its optoelectronic properties were comprehensively studied. Notably, this study marks the first fabrication of photodetectors utilizing a heterostructure composed of ZnO nanowires and inorganic halide perovskite CsPbBr3 nanocrystals, incorporating localized surface plasmon resonance of gold nanoparticles. Here, ZnO nanowires act as the carrier transport layer, while CsPbBr3 nanocrystals serve as the light absorber layer.
Analysis of the device revealed a photodetector based on Au-CsPbBr3 NCs/ZnO NWs with a high responsivity of 4.22×10^-2 A/W, a detectivity of 1.21×10^-11 Jones, and rapid rise and decay times of 34 ms and 35 ms, respectively. Additionally, the proposed device possessed excellent stability in a vacuum environment after 90 days of storage.
致謝----------i
摘要----------ii
Abstract----------iii
Table of Contents----------iv
Chapter 1 Introduction----------1
1.1 Nanostructures----------1
1.1.1 Zero-Dimensional Nanostructures----------2
1.1.2 Growth Mechanisms of Nanocrystals----------3
1.1.3 One-Dimensional Nanostructures----------4
1.1.4 Vapor-Liquid-Solid (VLS) Growth Mechanism----------5
1.2 Photodetector----------7
1.2.1 Photoconductive Effect----------8
1.2.2 Photoconductor----------8
1.2.3 Photodiode----------9
1.2.4 Key Parameters for Photodetector----------10
1.3 Metal-Semiconductor Contact (MS contact)----------12
1.3.1 Schottky Contact----------13
1.3.2 Ohmic Contact----------15
1.4 Heterostructures----------16
1.5 Plasmonic Effect of Nanomaterials----------17
1.5.1 Surface Plasmon Polariton (SPP)----------17
1.5.3 Mechanisms for Plasmon-Enhanced Performance----------21
1.6 Perovskite----------23
1.6.1 Properties of CsPbX3----------23
1.7 Properties of Zinc Oxide Nanowires----------25
1.8 Motivation----------27
Chapter 2 Experimental Section----------29
2.1 Experimental Equipments and Instruments----------29
2.1.1 Scanning Electron Microscope (SEM)----------29
2.1.2 Transmission Electron Microscope (TEM)----------30
2.1.3 X-ray Diffractometer (XRD)----------31
2.1.4 Probe Station and Semiconductor Characterization System----------33
2.1.5 X-ray Photoelectron Spectroscope (XPS)----------34
2.1.6 Photoluminescence Spectroscope (PL)----------35
2.1.7 UV-visible Spectroscope (UV-vis)----------36
2.1.8 Electron Beam Evaporation System----------37
2.1.9 Three-zone Furnace----------38
2.2 Experimental Procedures----------40
2.2.1 Synthesis of CsPbBr3 Nanocrystals----------40
2.2.2 Synthesis of ZnO Nanowires----------41
2.2.3 Device Fabrication----------43
Chapter 3 Results and Discussion----------45
3.1 Characterization of CsPbBr3 Nanocrystals----------45
3.1.1 XRD Analysis----------45
3.1.2 TEM Analysis----------45
3.1.3 PL and UV-visible Absorption Spectra----------46
3.1.3 SEM and EDX Analyses----------47
3.2 Characterization of Au Nanoparticles----------48
3.2.1 SEM Analysis----------48
3.2.2 UV-visible Absorption Spectrum----------49
3.3 Characterization of ZnO Nanowires----------50
3.3.1 XRD Analysis----------50
3.3.2 SEM and EDX Analyses----------51
3.3.3 TEM Analysis----------53
3.3.4 UV-visible Absorption Spectrum----------53
3.4 Characterization of Devices----------54
3.4.1 Cross-section SEM Analysis----------54
3.4.2 Band Structure of CsPbBr3 NCs/ZnO NWs Heterostructure----------55
3.4.3 PL and Time-Resolved Photoluminescence (TRPL) Analyses----------56
3.5 Device Measurements----------58
3.5.1 Optoelectronic Properties of CsPbBr3 NCs Device----------58
3.5.2 Optoelectronic Properties of Au-CsPbBr3 NCs Device----------61
3.5.3 Optoelectronic Properties of CsPbBr3 NCs/ZnO NWs Device----------62
3.5.4 Optoelectronic Properties of Au- CsPbBr3 NCs/ZnO NWs Device----------64
3.5.5 Devices Performances Comparison----------66
3.5.6 Feasibility of Commercialization of the Device----------70
Chapter 4 Summary and Conclusions----------72
Chapter 5 Future Prospects----------73
5.1 Vertical Photodetector----------73
5.2 Plasmon Enhancement Based on Different LSPR Metals----------74
5.3 Measurement of EQE and NEP Parameters----------75
References----------76
1. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389.
2. Baig, N.; Kammakakam, I.; Falath, W., Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Materials Advances 2021, 2 (6), 1821-1871.
3. Remita, H.; Lampre, I., Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials 2024, 17 (2), 364.
4. Paras; Yadav, K.; Kumar, P.; Teja, D. R.; Chakraborty, S.; Chakraborty, M.; Mohapatra, S. S.; Sahoo, A.; Chou, M. M. C.; Liang, C. T.; Hang, D. R., A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials (Basel) 2022, 13 (1).
5. Sarma, D. D.; Kamat, P. V., 2023 Nobel Prize in Chemistry: A Mega Recognition for Nanosized Quantum Dots. ACS Energy Letters 2023, 8 (12), 5149-5151.
6. Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K., Colloidal Quantum Dots for Optoelectronics. Journal of Materials Chemistry A 2017, 5 (26), 13252-13275.
7. Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chemical Reviews 2015, 115 (23), 12732-12763.
8. Kwon, S. G.; Hyeon, T., Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods. Small 2011, 7 (19), 2685-2702.
9. Kwon, S. G.; Hyeon, T., Kinetics of Colloidal Chemical Synthesis of Monodisperse Spherical Nanocrystals. In Nanoscale Materials in Chemistry, 2009; 127-153.
10. Thanh, N. T. K.; Maclean, N.; Mahiddine, S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews 2014, 114 (15), 7610-7630.
11. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition 2007, 46 (25), 4630-4660.
12. Ashley, M. J.; O’Brien, M. N.; Hedderick, K. R.; Mason, J. A.; Ross, M. B.; Mirkin, C. A., Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society 2016, 138 (32), 10096-10099.
13. Reddy, S. M.; Park, J. J.; Na, S.-M.; Maqableh, M. M.; Flatau, A. B.; Stadler, B. J. H., Electrochemical Synthesis of Magnetostrictive Fe–Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response. Advanced Functional Materials 2011, 21 (24), 4677-4683.
14. Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M., Heating-Sol–Gel Template Process for the Growth of TiO2 Nanorods with Rutile and Anatase Structure. Applied Surface Science 2004, 238 (1), 175-179.
15. Li, Z.; Kurtulus, Ö.; Fu, N.; Wang, Z.; Kornowski, A.; Pietsch, U.; Mews, A., Controlled Synthesis of CdSe Nanowires by Solution–Liquid–Solid Method. Advanced Functional Materials 2009, 19 (22), 3650-3661.
16. Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M., Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors. Journal of the American Chemical Society 2003, 125 (38), 11498-11499.
17. Kapoor, S.; Ahmad, H.; Julien, C. M.; Islam, S. S., Improved Ion-Diffusion Assisted Uniform Growth of 1D CdS Nanostructures for Enhanced Optical and Energy Storage Properties. Applied Surface Science 2020, 512, 145654.
18. Wagner, R. S.; Ellis, W. C., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89-90.
19. Wu, Y.; Yang, P., Direct Observation of Vapor−Liquid−Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123 (13), 3165-3166.
20. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122 (36), 8801-8802.
21. Miao, J.; Zhang, F., Recent Progress on Highly Sensitive Perovskite Photodetectors. Journal of Materials Chemistry C 2019, 7 (7), 1741-1791.
22. Abbaszadeh, S.; Allec, N.; Wang, K.; Karim, K. S., Low Dark-Current Lateral Amorphous-Selenium Metal–Semiconductor–Metal Photodetector. IEEE Electron Device Letters 2011, 32 (9), 1263-1265.
23. Wang, Y.; Zhang, X.; Jiang, Q.; Liu, H.; Wang, D.; Meng, J.; You, J.; Yin, Z., Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO2 Electron Transport Layer. ACS Applied Materials & Interfaces 2018, 10 (7), 6505-6512.
24. Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A. D.; Wu, T., Ambipolar Solution-Processed Hybrid Perovskite Phototransistors. Nature Communications 2015, 6 (1), 8238.
25. Petritz, R. L., Theory of Photoconductivity in Semiconductor Films. Physical Review 1956, 104 (6), 1508-1516.
26. Pan, A.; Zhu, X., 12 - Optoelectronic Properties of Semiconductor Nanowires. In Semiconductor Nanowires, Arbiol, J.; Xiong, Q., Eds. Woodhead Publishing: 2015; 327-363.
27. Kingston, R. H., Chapter 5 - Real Detectors: Vacuum Photodiodes and Photomultipliers, Photoconductors, Junction Photodiodes, and Avalanche Photodiodes. In Optical Sources, Detectors, and Systems, Kingston, R. H., Ed. Academic Press: Burlington, 1995; 97-122.
28. Bhattacharya, P.; Fornari, R.; Kamimura, H., Comprehensive semiconductor science and technology. 2011; 1-647.
29. Buschow, K. H. J.; Flemings, M. C.; Cahn, R., The Encyclopedia of Materials : Science and Technology. Elsevier: Amsterdam, 2001.
30. Ahmadi, M.; Wu, T.; Hu, B., A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials 2017, 29 (41), 1605242.
31. Xie, C.; Yan, F., Flexible Photodetectors Based on Novel Functional Materials. Small 2017, 13 (43), 1701822.
32. Tian, W.; Zhou, H.; Li, L., Hybrid Organic–Inorganic Perovskite Photodetectors. Small 2017, 13 (41), 1702107.
33. Miao, J.; Zhang, F., Recent Progress on Photomultiplication Type Organic Photodetectors. Laser & Photonics Reviews 2019, 13 (2), 1800204.
34. Jin, Z.; Zhou, Q.; Chen, Y.; Mao, P.; Li, H.; Liu, H.; Wang, J.; Li, Y., Graphdiyne:ZnO Nanocomposites for High-Performance UV Photodetectors. Advanced Materials 2016, 28 (19), 3697-3702.
35. Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V., Nanoscale Zinc Oxide Based Heterojunctions as Visible Light Active Photocatalysts for Hydrogen Energy and Environmental Remediation. Catalysis Reviews 2020, 62 (3), 346-405.
36. Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J., Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalysis Properties: A Review. Nanoscale 2013, 5 (18), 8326-8339.
37. Berini, P., Chapter 10 - Amplification and Lasing with Surface Plasmon Polaritons. In Handbook of Surface Science, Richardson, N. V.; Holloway, S., Eds. North-Holland: 2014; Vol. 4, 309-328.
38. Hou, W.; Cronin, S. B., A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials 2013, 23 (13), 1612-1619.
39. Murray, W. A.; Barnes, W. L., Plasmonic Materials. Advanced Materials 2007, 19 (22), 3771-3782.
40. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-Optics of Surface Plasmon Polaritons. Physics Reports 2005, 408 (3), 131-314.
41. Zhang, J.; Zhang, L.; Xu, W., Surface Plasmon Polaritons: Physics and Applications. Journal of Physics D: Applied Physics 2012, 45 (11), 113001.
42. Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles. Wiley New York: New York, 1983.
43. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908, 330 (3), 377-445.
44. Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P., Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 2002, 88 (7), 077402.
45. Nehl, C. L.; Liao, H.; Hafner, J. H., Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters 2006, 6 (4), 683-688.
46. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
47. Chou, C.-H.; Chen, F.-C., Plasmonic Nanostructures for Light Trapping in Organic Photovoltaic Devices. Nanoscale 2014, 6 (15), 8444-8458.
48. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S., Plasmon Resonances of Silver Nanowires with a Nonregular Cross Section. Physical Review B 2001, 64 (23), 235402.
49. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759.
50. Hao, E.; Schatz, G. C., Electromagnetic Fields Around Silver Nanoparticles and Dimers. The Journal of Chemical Physics 2004, 120 (1), 357-366.
51. Farsinezhad, S.; Banerjee, S. P.; Bangalore Rajeeva, B.; Wiltshire, B. D.; Sharma, H.; Sura, A.; Mohammadpour, A.; Kar, P.; Fedosejevs, R.; Shankar, K., Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au–TiO2 3D Nanocomposites. ACS Applied Materials & Interfaces 2017, 9 (1), 740-749.
52. Tandon, B.; Ghosh, S.; Milliron, D. J., Dopant Selection Strategy for High-Quality Factor Localized Surface Plasmon Resonance from Doped Metal Oxide Nanocrystals. Chemistry of Materials 2019, 31 (18), 7752-7760.
53. Ru, E. C. L.; Etchegoin, P. G. In Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects, 2008.
54. Li, K.-H.; Chen, X.-Y.; Su, D.; Song, Y.-J.; Zhou, H.-L.; Liu, Z.-G.; Xia, P.; Zhang, X.-Y., Design Strategies Toward Plasmon-Enhanced 2-Dimensional Material Photodetectors. Advanced Devices & Instrumentation 2023, 4, 0017.
55. Jiang, R.; Li, B.; Fang, C.; Wang, J., Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Advanced Materials 2014, 26 (31), 5274-5309.
56. Govorov, A. O.; Zhang, H.; Gun’ko, Y. K., Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules. The Journal of Physical Chemistry C 2013, 117 (32), 16616-16631.
57. Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J., A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12 (24), 4390.
58. Li, G.; Wang, Y.; Huang, L.; Sun, W., Research Progress of High-Sensitivity Perovskite Photodetectors: A Review of Photodetectors: Noise, Structure, and Materials. ACS Applied Electronic Materials 2022, 4 (4), 1485-1505.
59. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
60. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I., Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356 (6345), 1376-1379.
61. Ling, Y.; Yuan, Z.; Tian, Y.; Wang, X.; Wang, J. C.; Xin, Y.; Hanson, K.; Ma, B.; Gao, H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials 2016, 28 (2), 305-311.
62. Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters 2014, 5 (8), 1421-1426.
63. Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; Niu, G.; Tang, J., Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Letters 2016, 16 (12), 7446-7454.
64. Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y.; Bao, Q., Two-Dimensional CH3NH3PbI3 Perovskite: Synthesis and Optoelectronic Application. ACS Nano 2016, 10 (3), 3536-3542.
65. Bhatt, V.; Kumar, M.; Yadav, P.; Kumar, M.; Yun, J.-H., Low Cost and Solution Processible Sandwiched CH3NH3PbI3-xClx Based Photodetector. Materials Research Bulletin 2018, 99, 79-85.
66. Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials 2015, 3 (10), 1389-1396.
67. MØLler, C. K., Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature 1958, 182 (4647), 1436-1436.
68. Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G., Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 2013, 13 (7), 2722-2727.
69. Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J.-M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J., Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano 2018, 12 (4), 3477-3486.
70. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696.
71. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H., A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics 2005, 98 (4).
72. Djurišić, A. B.; Ng, A. M. C.; Chen, X. Y., ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics 2010, 34 (4), 191-259.
73. Gupta, J.; Hassan, P. A.; Barick, K. C., Multifunctional ZnO Nanostructures: A Next Generation Nanomedicine for Cancer Therapy, Targeted Drug Delivery, Bioimaging, and Tissue Regeneration. Nanotechnology 2023, 34 (28).
74. Nadupalli, S.; Repp, S.; Weber, S.; Erdem, E., About Defect Phenomena in ZnO Nanocrystals. Nanoscale 2021, 13 (20), 9160-9171.
75. Li, L.; Gu, L.; Lou, Z.; Fan, Z.; Shen, G., ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. ACS Nano 2017, 11 (4), 4067-4076.
76. Rackauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G., ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials 2017, 7 (11), 381.
77. Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S., ZnO Nanorod Gas Sensor for Ethanol Detection. Sensors and Actuators B: Chemical 2012, 162 (1), 237-243.
78. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J., ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano Letters 2007, 7 (8), 2183-2187.
79. Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F., Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission. Advanced Materials 2006, 18 (24), 3275-3278.
80. Lin, C.-Y.; Lai, Y.-H.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Highly Efficient Dye-Sensitized Solar Cell with a ZnO Nanosheet-Based Photoanode. Energy & Environmental Science 2011, 4 (9), 3448-3455.
81. Rose, K.; Eldridge, S.; Chapin, L., The Internet of Things: An Overview. The internet society (ISOC) 2015, 80, 1-50.
82. Atzori, L.; Iera, A.; Morabito, G., The Internet of Things: A Survey. Computer Networks 2010, 54 (15), 2787-2805.
83. Swan, M., Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks 2012, 1 (3), 217-253.
84. Liu, X.; Lam, K. H.; Zhu, K.; Zheng, C.; Li, X.; Du, Y.; Liu, C.; Pong, P. W. T., Overview of Spintronic Sensors With Internet of Things for Smart Living. IEEE Transactions on Magnetics 2019, 55 (11), 1-22.
85. Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H., Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Applied Materials & Interfaces 2015, 7 (45), 25007-25013.
86. Xu, F.; Kong, X.; Wang, W.; Juan, F.; Wang, M.; Wei, H.; Li, J.; Cao, B., Quantum Size Effect and Surface Defect Passivation in Size-Controlled CsPbBr3 Quantum Dots. Journal of Alloys and Compounds 2020, 831, 154834.
87. Sun, M.; Fang, Q.; Zhang, Z.; Xie, D.; Sun, Y.; Xu, J.; Li, W.; Ren, T.; Zhang, Y., All-Inorganic Perovskite Nanowires–InGaZnO Heterojunction for High-Performance Ultraviolet–Visible Photodetectors. ACS Applied Materials & Interfaces 2018, 10 (8), 7231-7238.
88. Yang, Z.; Jiang, M.; Guo, L.; Hu, G.; Gu, Y.; Xi, J.; Huo, Z.; Li, F.; Wang, S.; Pan, C., A High Performance CsPbBr3 Microwire Based Photodetector Boosted by Coupling Plasmonic and Piezo-Phototronic Effects. Nano Energy 2021, 85, 105951.
89. Zeng, L.; Tao, L.; Tang, C.; Zhou, B.; Long, H.; Chai, Y.; Lau, S. P.; Tsang, Y. H., High-Responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports 2016, 6 (1), 20343.
90. Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H., Sensitive Solution-Processed Visible-Wavelength Photodetectors. Nature Photonics 2007, 1 (9), 531-534.
91. Zhao, Q.; Wang, W.; Carrascoso-Plana, F.; Jie, W.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R., The Role of Traps in the Photocurrent Generation Mechanism in Thin InSe Photodetectors. Materials Horizons 2020, 7 (1), 252-262.
92. Zhang, B. Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J., Broadband High Photoresponse from Pure Monolayer Graphene Photodetector. Nature Communications 2013, 4 (1), 1811.
93. Zhang, Z.-X.; Long-Hui, Z.; Tong, X.-W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L.-B.; Wu, Y.-C., Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe2/Perovskite Heterojunctions. The Journal of Physical Chemistry Letters 2018, 9 (6), 1185-1194.
94. Goswami, L.; Aggarwal, N.; Vashishtha, P.; Jain, S. K.; Nirantar, S.; Ahmed, J.; Khan, M. A. M.; Pandey, R.; Gupta, G., Fabrication of GaN Nano-Towers Based Self-Powered UV Photodetector. Scientific Reports 2021, 11 (1), 10859.
95. Nagal, V.; Kumar, V.; Rahman, S.; Kumar, K.; Singh, K.; Kumar, M.; Ahmad, R.; Hafiz, A. K., Insight into Hot Carrier Kinetics of CsPbBr3/ZnO Heterostructures for Photodetector Application. ACS Applied Optical Materials 2023, 1 (3), 779-787.
96. Du, S.; Li, G.; Cao, X.; Wang, Y.; Lu, H.; Zhang, S.; Liu, C.; Zhou, H., Oxide Semiconductor Phototransistor with Organolead Trihalide Perovskite Light Absorber. Advanced Electronic Materials 2017, 3 (4), 1600325.
97. He, J.; Qiao, K.; Gao, L.; Song, H.; Hu, L.; Jiang, S.; Zhong, J.; Tang, J., Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors. ACS Photonics 2014, 1 (10), 936-943.
98. Tsai, P.-H. Enhanced Performance Photodetector Based on Ag Nanoparticles / CsPbBr1.2 I1.8 Quantum Dots. National Tsinghua University, 2019.
99. Hsiao, Y.-C. Enhanced Performances of Photodetector Based on CsPbBr3 Nanocrystals by Forming Heterojunction with CsPbI3 Nanorods and Utilizing Localized Surface Plasmonic Effect of Gold Nanoparticles. National Tsinghua University, 2020.
100. Wang, H.; Kim, D. H., Perovskite-Based Photodetectors: Materials and Devices. Chemical Society Reviews 2017, 46 (17), 5204-5236.
101. Rohizat, N. S.; Ripain, A. H. A.; Lim, C. S.; Tan, C. L.; Zakaria, R., Plasmon-Enhanced Reduced Graphene Oxide Photodetector with Monometallic of Au and Ag Nanoparticles at VIS–NIR Region. Scientific Reports 2021, 11 (1), 19688.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *