帳號:guest(3.133.146.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王奕茗
作者(外文):Wang, Yi-Ming
論文名稱(中文):嚴重晶格扭曲稀二元合金機械性質與固溶強化機制之研究
論文名稱(外文):Mechanical Properties and Solid-Solution Strengthening Mechanism of Dilute Binary Alloys with Severe Lattice Distortion
指導教授(中文):張守一
指導教授(外文):Chang, Shou-Yi
口試委員(中文):蔡銘洪
鄒年棣
口試委員(外文):Tsai, Ming-Hung
Tsou, Nien-Ti
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:111031505
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:203
中文關鍵詞:金屬材料晶格扭曲固溶強化合金材料晶體缺陷機械性質
外文關鍵詞:metallattice distortionsolid solution strengtheningalloycrystal defectmechanical property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在眾多強化金屬的手段中,固溶強化是一種能同時提升合金強度並保有延展性的簡易方式,透過添加溶質元素來形成晶格扭曲,而影響差排在塑性變形過程中的移動行為。在過去十年內,高熵合金的概念被清華大學所率先提出,其後一系列多主元素合金接連相繼開發而逐漸受到各界學者的重視,由於組成元素眾多,結構內無法區分溶質與溶劑,並具備嚴重晶格扭曲的效應,為合金帶來了有別於傳統固溶體的特殊性質,如高強度與延展性的兼具。然而多種元素在高濃度比例下所混合,在製程上可能較為困難且成本較高,且許多研究提出晶格扭曲的程度並不總是受到元素數量所主導,其中的機制尚未明瞭。因此本研究透過整理與分析固溶強化的影響因素,建構出一套固溶法則,在此標準下篩選出元素,設計出以Ni、Cu、Fe為基底,Al、W作為溶質的一系列稀固溶合金,期望能達到與多主元素合金相近的晶格扭曲,並進行基本性質分析與機械性質的量測,包含XRD晶體結構鑑定、SEM與EBSD微結構觀察與晶粒尺寸量測、EPMA成分分析、硬度測試與巨觀拉伸測試。本研究試圖開發一系列提升強度與延展性的二元合金,釐清不同溶質元素在晶界強化與固溶強化機制上所帶來影響,能在未來開發新一代合金上帶來啟發。
Among various methods to strengthen metals, solid solution strengthening offers a straightforward approach to enhancing alloy strength while maintaining ductility. Solute elements induce lattice distortion, which influences the movement of dislocations during plastic deformation. Over the past decade, high-entropy alloys and multi-principal element alloys have garnered increasing attention from scholars worldwide. With their multiple constituent elements and atomic size difference, these alloys exhibit severe lattice distortion effects, resulting in a unique combination of high strength and ductility. However, blending multiple elements at high concentrations can complicate processing and increase costs. The degree of lattice distortion is not solely determined by the number of elements. Therefore, this study establishes guidelines for solid solution design. We selected elements based on these criteria to develop a series of dilute binary alloys using Ni, Cu, and Fe as matrices, with Al and W as solutes to induce severe lattice distortion. Basic properties were evaluated using X-ray diffraction, scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), and electron probe microanalysis (EPMA). Additionally, hardness and macroscopic tensile tests were conducted to assess mechanical properties. This study aims to develop a series of binary alloys with enhanced strength and ductility. We have clarified how different solute elements affect grain boundary strengthening and solid solution mechanisms, offering insights that may inspire the future development of next-generation alloys.
摘要 I
Abstract III
目錄 IV
圖目錄 IX
表目錄 XX
壹、前言 1
貳、文獻回顧 2
2-1 合金材料及其強化機制 2
2-1-1 合金材料 2
2-1-2 加工硬化 5
2-1-3 晶界強化 7
2-1-4 析出強化 9
2-1-5 固溶強化 12
2-1-6 固溶合金 14
2-1-7 鐵合金 16
2-1-8 鋁合金 17
2-1-9 銅合金 18
2-1-10 鎳合金 20
2-1-11 鈦合金 23
2-2 固溶強化機制 24
2-2-1 古典固溶強化理論 24
2-2-2 晶格扭曲 28
2-2-3 晶格扭曲評估方式 30
2-2-4 晶格摩擦力 (lattice friction) 33
2-2-5 溶質與差排交互作用 34
2-2-6 原子尺寸差異 36
2-2-7 彈性模數差異 38
2-2-8 電負度差異 41
2-2-9 電荷轉移效應 43
2-2-10 殘餘應變 45
2-2-11 晶粒細化 47
2-3 多主元素合金 48
2-3-1 多主元素合金與高熵合金 48
2-3-2 嚴重晶格扭曲效應 50
2-3-3 組成元素對晶格扭曲之影響 52
2-3-4 異質晶格應變場 (Heterogeneous lattice strain field) 53
2-3-5 疊差能降低 54
2-3-6 差排移動能力 56
2-3-7 晶界強化效果提升 59
2-3-8 局部化學有序性 (Local chemical ordering) 61
2-4 二元合金 63
2-4-1 低濃度二元合金 63
2-4-2 位能改變 64
2-4-3 電負度效應 66
2-4-4 鍵結型態改變 67
2-4-5 疊差能改變 69
2-4-6 晶界強化效果改變 71
2-4-7 高濃度二元合金 72
2-5 研究目的 75
參、實驗步驟 76
3-1 實驗規劃 76
3-2 實驗流程 77
3-2-1 成分選擇 77
3-2-2 合金熔煉 85
3-2-3 均質化 86
3-2-4 冷滾軋與再結晶曲線 86
3-2-5 金相處理 88
3-2-6 XRD晶體結構鑑定 89
3-2-7 SEM微結構觀察 89
3-2-8 晶粒尺寸量測 89
3-2-9 EPMA成分分析 91
3-2-10 EBSD結構分析 91
3-2-11 維氏硬度測試 92
3-2-12 室溫拉伸測試 92
肆、結果與討論 93
4-1 微結構觀察與分析 93
4-1-1 XRD晶體結構鑑定 93
4-1-2 EPMA組成成分分析 98
4-1-3 SEM微結構觀察 99
4-1-4 EBSD微結構觀察與相鑑定 105
4-2 再結晶行為 108
4-2-1 NA系列合金 108
4-2-2 NW系列合金 111
4-2-3 CA系列合金 114
4-2-4 FA系列合金 116
4-3 Hall-Petch relation探討 119
4-3-1 NA系列合金 119
4-3-2 NW系列合金 121
4-3-3 CA系列合金 122
4-3-4 FA系列合金 123
4-3-5 總結與比較 124
4-4 室溫拉伸測試 143
4-4-1 NA系列合金 143
4-4-2 NW系列合金 148
4-4-3 CA系列合金 153
4-4-4 FA系列合金 158
4-4-5 總結與比較 163
伍、結論 171
陸、參考文獻 173
柒、附錄 181

[1] Y. Zhao, T. Nieh, Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys, Intermetallics 86 (2017) 45-50.
[2] Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, Journal of Materials Science & Technology 34(2) (2018) 349-354.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials 6(5) (2004) 299-303.
[4] Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today 19(6) (2016) 349-362.
[5] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature reviews materials 4(8) (2019) 515-534.
[6] K.-H. Lin, C.-M. Tseng, C.-C. Chueh, S.-Y. Chang, Y.-C. Lo, C.-C. Wang, S.-J. Lin, J.-W. Yeh, Different lattice distortion effects on the tensile properties of Ni-W dilute solutions and CrFeNi and CoCrFeMnNi concentrated solutions, Acta Materialia 221 (2021) 117399.
[7] Z. Li, S. Ma, S. Zhao, W. Zhang, F. Peng, Q. Li, T. Yang, C.-Y. Wu, D. Wei, Y.-C. Chou, Achieving superb strength in single-phase FCC alloys via maximizing volume misfit, Materials Today 63 (2023) 108-119.
[8] H.S. Oh, S.J. Kim, K. Odbadrakh, W.H. Ryu, K.N. Yoon, S. Mu, F. Körmann, Y. Ikeda, C.C. Tasan, D. Raabe, Engineering atomic-level complexity in high-entropy and complex concentrated alloys, Nature communications 10(1) (2019) 2090.
[9] A. Haider, M. Ikram, A. Rafiq, Properties of Nanomaterials, Green Nanomaterials as Potential Antimicrobials, Springer2022, pp. 47-59.
[10] S. Zinelis, W. Brantley, Structure/property relationships in orthodontic ceramics, Orthodontic Applications of Biomaterials, Elsevier2017, pp. 61-71.
[11] W. Steurer, THE METALLIC ELEMENTS, Physical metallurgy 1 (1996) 1.
[12] D.B. Miracle, S.L. Donaldson, S.D. Henry, C. Moosbrugger, G.J. Anton, B.R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon, ASM handbook, ASM international Materials Park, OH2001.
[13] A.P. Mouritz, Strengthening of metal alloys, Introduction to aerospace materials (2012) 57-90.
[14] H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, S.H. Zhang, Special rolling techniques for improvement of mechanical properties of ultrafine‐grained metal sheets: a review, Advanced Engineering Materials 18(5) (2016) 754-769.
[15] R. Masumura, P. Hazzledine, C. Pande, Yield stress of fine grained materials, Acta Materialia 46(13) (1998) 4527-4534.
[16] T. Gladman, Precipitation hardening in metals, Materials science and technology 15(1) (1999) 30-36.
[17] K. Yang, Y. Wang, M. Guo, H. Wang, Y. Mo, X. Dong, H. Lou, Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: a review, Progress in Materials Science (2023) 101141.
[18] C.A. is Mandatory, MTSE 4010-Physical Metallurgy Principles.
[19] M. Gasik, Handbook of ferroalloys: theory and technology, Butterworth-Heinemann2013.
[20] W.C. Leslie, Iron and its dilute substitutional solid solutions, Springer, 1972.
[21] S. Lampman, ASM Handbook: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, Materials Park (OH): ASM International (1990).
[22] K. Maki, Y. Ito, H. Matsunaga, H. Mori, Solid-solution copper alloys with high strength and high electrical conductivity, Scripta Materialia 68(10) (2013) 777-780.
[23] V. Kukareko, A. Kononov, Effect of the size misfit of atoms of binary copper alloys on the friction fracture strength, Physics of the Solid State 51 (2009) 286-291.
[24] D.K. Ganji, G. Rajyalakshmi, Influence of alloying compositions on the properties of nickel-based superalloys: a review, Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019 (2020) 537-555.
[25] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki, Solid solution hardening of nickel—role of transition metal and B-subgroup solutes—, Transactions of the Japan institute of metals 27(9) (1986) 656-664.
[26] S. Zhao, Y.N. Osetsky, Y. Zhang, Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys, Journal of Alloys and Compounds 701 (2017) 1003-1008.
[27] K. Shitara, K. Yokota, M. Yoshiya, J. Umeda, K. Kondoh, First-principles design and experimental validation of β-Ti alloys with high solid-solution strengthening and low elasticities, Materials Science and Engineering: A 843 (2022) 143053.
[28] R.L. Fleischer, Substitutional solution hardening, Acta metallurgica 11(3) (1963) 203-209.
[29] R. Labusch, A statistical theory of solid solution hardening, physica status solidi (b) 41(2) (1970) 659-669.
[30] G. Leyson, W. Curtin, Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals, Philosophical Magazine 93(19) (2013) 2428-2444.
[31] Z. Wu, Y. Gao, H. Bei, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Materialia 120 (2016) 108-119.
[32] C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Solute strengthening in random alloys, Acta Materialia 124 (2017) 660-683.
[33] S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys, Acta Materialia 171 (2019) 201-215.
[34] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom 65 (2013) 1759-1771.
[35] P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, J. Han, Compositional complexity dependence of lattice distortion in FeNiCoCrMn high entropy alloy system, Materials Science and Engineering: A 823 (2021) 141775.
[36] L. Owen, E. Pickering, H. Playford, H. Stone, M. Tucker, N. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Materialia 122 (2017) 11-18.
[37] X. Zhang, J. Yan, Y.-H. Chen, R. Kevorkyants, T. Wen, X. Sun, A. Hu, J. Huang, Effects of lattice distortion and chemical short-range ordering on the incipient behavior of Ti-based multi-principal element alloys: MD simulations and DFT calculations, International Journal of Plasticity 166 (2023) 103643.
[38] W.G. Nöhring, W. Curtin, Correlation of microdistortions with misfit volumes in high entropy alloys, Scripta Materialia 168 (2019) 119-123.
[39] C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Lattice‐distortion‐enhanced yield strength in a refractory high‐entropy alloy, Advanced Materials 32(49) (2020) 2004029.
[40] A.M. Goryaeva, P. Carrez, P. Cordier, Low viscosity and high attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations, Scientific reports 6(1) (2016) 34771.
[41] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Materialia 134 (2017) 33-36.
[42] G.P.M. Leyson, W.A. Curtin, L.G. Hector Jr, C.F. Woodward, Quantitative prediction of solute strengthening in aluminium alloys, Nature materials 9(9) (2010) 750-755.
[43] M. Wakeda, T. Tsuru, M. Kohyama, T. Ozaki, H. Sawada, M. Itakura, S. Ogata, Chemical misfit origin of solute strengthening in iron alloys, Acta Materialia 131 (2017) 445-456.
[44] C. Chen, S. Fan, J. Niu, H. Huang, Z. Jin, L. Kong, D. Zhu, G. Yuan, Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening, Materials & Design 204 (2021) 109676.
[45] H.S. Oh, K. Odbadrakh, Y. Ikeda, S. Mu, F. Körmann, C.-J. Sun, H.S. Ahn, K.N. Yoon, D. Ma, C.C. Tasan, Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects, Acta Materialia 216 (2021) 117135.
[46] P. Singh, B. Vela, G. Ouyang, N. Argibay, J. Cui, R. Arroyave, D.D. Johnson, A ductility metric for refractory-based multi-principal-element alloys, Acta Materialia 257 (2023) 119104.
[47] Y. Ye, C. Liu, Y. Yang, A geometric model for intrinsic residual strain and phase stability in high entropy alloys, Acta Materialia 94 (2015) 152-161.
[48] W. Li, K. Xiong, L. Yang, S. Zhang, J. He, Y. Wang, Y. Mao, An ambient ductile TiHfVNbTa refractory high-entropy alloy: Cold rolling, mechanical properties, lattice distortion, and first-principles prediction, Materials Science and Engineering: A 856 (2022) 144046.
[49] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140.
[50] E. Bruder, P. Braun, H. ur Rehman, R.K. Marceau, A.S. Taylor, R. Pippan, K. Durst, Influence of solute effects on the saturation grain size and rate sensitivity in Cu-X alloys, Scripta Materialia 144 (2018) 5-8.
[51] Z. Xiao, L. He, X.-M. Bai, First principle studies of effects of solute segregation on grain boundary strength in Ni-based alloys, Journal of Alloys and Compounds 874 (2021) 159795.
[52] Z. Huang, F. Chen, Q. Shen, L. Zhang, T.J. Rupert, Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength, Acta Materialia 166 (2019) 113-125.
[53] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
[54] E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia 188 (2020) 435-474.
[55] H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu, W. Zhao, Z. Chen, H. Gong, Y. Yang, Multifunctional high entropy alloys enabled by severe lattice distortion, Advanced Materials 36(17) (2024) 2305453.
[56] S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Ultrastrong medium‐entropy single‐phase alloys designed via severe lattice distortion, Advanced Materials 31(8) (2019) 1807142.
[57] L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, P.K. Liaw, Lattice-distortion dependent yield strength in high entropy alloys, Materials Science and Engineering: A 784 (2020) 139323.
[58] J. Li, Y. Chen, Q. He, X. Xu, H. Wang, C. Jiang, B. Liu, Q. Fang, Y. Liu, Y. Yang, Heterogeneous lattice strain strengthening in severely distorted crystalline solids, Proceedings of the National Academy of Sciences 119(25) (2022) e2200607119.
[59] S.I. Hong, C. Laird, Mechanisms of slip mode modification in FCC solid solutions, Acta metallurgica et materialia 38(8) (1990) 1581-1594.
[60] D. Wei, W. Gong, T. Tsuru, I. Lobzenko, X. Li, S. Harjo, T. Kawasaki, H.-S. Do, J.W. Bae, C. Wagner, Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys, International Journal of Plasticity 159 (2022) 103443.
[61] A. Zaddach, C. Niu, C. Koch, D. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, Jom 65 (2013) 1780-1789.
[62] X. Liu, Y. Wu, R. Bai, X. Qu, Z. Xu, Z. Li, X. Hui, Re alloying-driven stacking fault energy decrease enabled strength-ductility synergy in NiCoCrFe high-entropy alloys, Materials Science and Engineering: A 898 (2024) 145368.
[63] Q.-J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nature communications 10(1) (2019) 3563.
[64] P. Wang, Y. Wu, J. Liu, H. Wang, Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys, Extreme Mechanics Letters 17 (2017) 38-42.
[65] B. Chen, S. Li, J. Ding, X. Ding, J. Sun, E. Ma, Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys, Scripta Materialia 222 (2023) 115048.
[66] Y. Lu, Y.-H. Zhang, E. Ma, W.-Z. Han, Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals, Proceedings of the National Academy of Sciences 118(37) (2021) e2110596118.
[67] R. Armstrong, I. Codd, R. Douthwaite, N. Petch, The plastic deformation of polycrystalline aggregates, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 7(73) (1962) 45-58.
[68] Q. He, J. Wang, H. Chen, Z. Ding, Z. Zhou, L. Xiong, J. Luan, J. Pelletier, J. Qiao, Q. Wang, A highly distorted ultraelastic chemically complex Elinvar alloy, Nature 602(7896) (2022) 251-257.
[69] Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, Short-range ordering and its effects on mechanical properties of high-entropy alloys, Journal of Materials Science & Technology 62 (2021) 214-220.
[70] R. Liu, Z. Zhang, L. Li, X. An, Z. Zhang, Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys, Scientific Reports 5(1) (2015) 9550.
[71] W. Liu, X.-G. Lu, Q.-M. Hu, Comprehensive understanding of local lattice distortion in dilute and equiatomic FCC alloys, Materials Chemistry and Physics 293 (2023) 126928.
[72] F. Meng, W. Zhang, Z. Zhou, R. Sheng, A.C.-P. Chuang, C. Wu, H. Huang, S. Zhang, H. Zhang, L. Zhu, Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy, Scripta Materialia 203 (2021) 114104.
[73] P. Liu, D. Chen, Q. Wang, P. Xu, M. Long, H. Duan, Crystal structure and mechanical properties of nickel–cobalt alloys with different compositions: A first-principles study, Journal of Physics and Chemistry of Solids 137 (2020) 109194.
[74] F.-H. Cao, Y.-J. Wang, L.-H. Dai, Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment, Acta Materialia 194 (2020) 283-294.
[75] G. Arora, A. Manzoor, D.S. Aidhy, Charge-density based evaluation and prediction of stacking fault energies in Ni alloys from DFT and machine learning, Journal of Applied Physics 132(22) (2022).
[76] Y. Wu, S. Li, Z. Ding, W. Liu, Y. Zhao, Y. Zhu, Effect of charge redistribution factor on stacking-fault energies of Mg-based binary alloys, Scripta Materialia 112 (2016) 101-105.
[77] E. Kozlov, A. Zhdanov, N. Koneva, Barrier retardation of dislocations. Hall-Petch problem, Phys. Mesomech. 9(3–4) (2006) 75-85.
[78] F. Jiang, T. Masumura, T. Tsuchiyama, S. Takaki, Effect of substitutional element addition on Hall-Petch relationship in interstitial free ferritic steels, isij international 59(10) (2019) 1929-1931.
[79] J. Li, K. Yamanaka, Y. Zhang, T. Furuhara, G. Cao, J. Hu, A. Chiba, Reaching unconventionally large Hall-Petch coefficients in face-centered cubic high-entropy alloys, Materials Research Letters 12(6) (2024) 399-407.
[80] Y. Wen, B. Guan, Y. Xin, C. Liu, P. Wu, G. Huang, Q. Liu, Solute atom mediated Hall-Petch relations for magnesium binary alloys, Scripta Materialia 210 (2022) 114451.
[81] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials transactions 46(12) (2005) 2817-2829.
[82] C. Kittel, P. McEuen, Introduction to solid state physics, John Wiley & Sons2018.
[83] N.E. Holden, T. Coplen, The periodic table of the elements, Chemistry International--Newsmagazine for IUPAC 26(1) (2004) 8-9.
[84] H. Okamoto, Al-Ni (aluminum-nickel), Journal of Phase Equilibria and diffusion 25(4) (2004) 394.
[85] K. Gupta, The Co-Ni-W (cobalt-nickel-tungsten) system, Journal of phase equilibria 21(4) (2000) 396-401.
[86] G.A. Gohar, T. Manzoor, A.N. Shah, Investigation of thermal and mechanical properties of Cu-Al alloys with silver addition prepared by powder metallurgy, Journal of Alloys and Compounds 735 (2018) 802-812.
[87] H. Sina, J. Corneliusson, K. Turba, S. Iyengar, A study on the formation of iron aluminide (FeAl) from elemental powders, Journal of Alloys and Compounds 636 (2015) 261-269.
[88] E.-. ASTM, Standard test methods for determining average grain size, ASTM International: West Conshohocken, PA, USA (2004).
[89] K. Nakanishi, H. Suzuki, Analysis of the grain size dependence of the yield stress in copper-aluminum and copper-nickel alloys, Transactions of the Japan Institute of Metals 15(6) (1974) 435-440.
[90] M. Shiga, Correlation between lattice constant and magnetic moment in 3d transition metal alloys, AIP Conference Proceedings, American Institute of Physics, 1974, pp. 463-477.
[91] Q. He, S. Yoshida, N. Tsuji, Characteristic strengthening mechanisms in body-centered cubic refractory high/medium entropy alloys, Scripta Materialia 231 (2023) 115442.
[92] N. Medvedeva, M. Park, D.C. Van Aken, J.E. Medvedeva, First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe, Journal of Alloys and Compounds 582 (2014) 475-482.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *