帳號:guest(13.59.84.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳金峰
作者(外文):Wu, Chin-Feng
論文名稱(中文):具有多點邊界條件的奇異擾動橢圓方程
論文名稱(外文):On Singularly Perturbed Elliptic Equations with Multi-point Boundary Conditions
指導教授(中文):李俊璋
李金龍
指導教授(外文):Lee, Chiun-Chang
Li, Chin-Lung
口試委員(中文):吳昌鴻
張覺心
口試委員(外文):Wu, Chang-Honh
Chang, Chueh-Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計算與建模科學研究所
學號:111026511
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:31
中文關鍵詞:橢圓方程Robin多點邊界條件固定點理論存在性唯一性
外文關鍵詞:elliptic equationRobin multi-point boundary conditionsfixed point theoryexistenceuniqueness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要探討在有界域上的奇異擾動橢圓方程,其中我們考慮Robin多點邊界條件(涉及到未知解在內點的行為)。我們建立一個標準的橢圓方程以及對應的映射與原方程做連結,將問題轉化為尋找該映射的固定點的問題。我們利用固定點理論得到該映射存在唯一固定點的一個充分條件,從而證明了原方程的解的存在性和唯一性。此外,本文還提供了一個例子,展示了方程可能有多個解或無解的情況。
This thesis primarily investigates singularly perturbed elliptic equations in bounded domains, where we consider Robin multi-point boundary conditions (involving the behavior of the unknown solution at interior points). We establish a standard elliptic equation and a corresponding mapping linked to the original equation, transforming the problem into finding the fixed point of this mapping. By utilizing fixed point theory, we obtain a sufficient condition for the existence of a unique fixed point of this mapping, thereby proving the existence and uniqueness of solutions for the original equation. Additionally, this thesis provides an example demonstrating that the equation may have multiple solutions or no solution at all.
Table of Contents
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . 16
A Appendix A: Proof of Example 1.1 . . . . . . . . . . . . . . . 23
B Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
[1] J. Adem, M. Moshinsky, Self-adjointness of a certain type of vectorial boundary
value problems, Bol. Soc. Mat. Mexicana 7 (1950) 1–17.
[2] J. Angell, W. Olmstead, Singularly perturbed integral equations with endpoint
boundary layers, SIAM J. Appl. Math. 49 (1989) 1567–1584.
[3] U. Ascher, R.D. Russell, Reformulation of boundary value problems in “standard”
form, SIAM Rev. 23 (1981) 238–254.
[4] C. Bandle, R.P. Sperb, Stakgold, I.: Diffusion and reaction with monotone kinetics,
Nonlinear Anal. 8 (1984) 321–333.
[5] M.S. Berger, L.E. Fraenkel, Nonlinear desingularization in certain freeboundary
problems, Comm. Math. Phys. 77 (1980) 149–172.
[6] R.C. Brown, G.B. Green, A.M. Krall, Eigenfunction expansions under
multipoint-integral boundary conditions, Ann. Mat. Pura Appl. (4) 95 (1973) 231–
243.
[7] J. Caballero, J. Harjani, K. Sadarangani, On positive solutions for a mpoint
fractional boundary value problem on an infinite interval, Rev. R. Acad. Cienc.
Exactas F´ıs. Nat. Ser. A Mat. RACSAM 113 (2019) 3635–3647.
[8] J. Caballero, J. Harjani, K. Sadarangani, Existence and uniqueness of positive
solutions for a class of singular fractional differential equation with infinite-point
boundary value conditions, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM
115 (2021), Paper No. 48, 12 pages.
[9] E. Casas, L.A. Fern´andez: Optimal control of semilinear elliptic equations with
pointwise constraints on the gradient of the state, Applied Mathematics and Optimization
27 (1993) 35–56.
[10] M. Dehghan: A computational study of the one-dimensional parabolic equation
subject to nonclassical boundary specifications, Numerical Methods for Partial Differential
Equations 22 (2006) 220–257.
[11] A. Foroush Bastani, D. Damircheli, An adaptive algorithm for solving stochastic
multi-point boundary value problems, Numer. Algorithms 74 (2017) 1119–1143.
[12] F.Z. Geng, A numerical algorithm for nonlinear multi-point boundary value problems,
J. Comput. Appl. Math. 236 (2012) 1789–1794.
[13] M. Greguˇs, F. Neuman, F. M. Arscott, Three-point boundary value problems
in differential equations, J. London Math. Soc. (2) 3 (1971) 429–436.
[14] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, New York, Heidelberg, and Berlin (1983).
[15] F.A. Howes, Singularly perturbed semilinear elliptic boundary value problems,
Comm. Partial Differential Equations 4 (1979) 1–39.
[16] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the first kind for a
Sturm–Liouville operator in its differential and finite difference aspects, Differ. Equ.
23 (1987) 803–810.
[17] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for
a Sturm–Liouville operator, Differ. Equ. 23 (1987) 979–987.
[18] H.B. Keller, Accurate difference methods for linear ordinary differential systems
subject to linear constraints, SIAM J. Numer. Anal. 6 (1969) 8–30.
[19] C.-C. Lee, Uniqueness and asymptotics of singularly perturbed equations involving
implicit boundary conditions, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat.
RACSAM 117 (2023), Paper No. 51, 18 pages.
[20] C.-C. Lee, Fixed-point approaches to Robin problems with infinite-point BCs, submitted
to the journal.
[21] C.-C. Lee, An existence theorem for semilinear problems with multi-point and integral
boundary conditions, submitted to the journal. (2024).
[22] G.H. Meyer, Continuous orthonormalization for multipoint problems for linear ordinary
differential equations, SIAM J. Numer. Anal. 24 (1987) 1288–1300.
[23] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey. In Handbook
of differential equations: ordinary differential equations. Vol. 2 (2006), 461–557.
North-Holland.
[24] R.E. O’Malley Jr., Topics in singular perturbations, Adv. Math. 2 (1968) 365–
470.
[25] R.E. O’Malley Jr., Singular Perturbation Methods for Ordinary Differential Equations,
Springer Verlag, 1991.
[26] B. Pelloni , D.A. Smith, Nonlocal and multipoint boundary value problems for
linear evolution equations, Stud. Appl. Math. 141 (2018), 46–88.
[27] P Souplet, Blow-up in nonlocal reaction–diffusion equations, SIAM J. Math. Anal.,
29 (1998) 1301–1334.
[28] R. Sperb, Optimal bounds in semilinear elliptic problems with nonlinear boundary
conditions, Z. Angew. Math. Phys. 44 (1993) 639–653.
[29] M. Tatari, M. Dehghan, An efficient method for solving multi-point boundary
value problems and applications in physics, J. Vib. Control 18 (2012) 1116–1124.
[30] M. Urabe, Numerical solution of multi-point boundary value problems in Chebyshev
series. Theory of the method, Numer. Math. 9 (1966/67) 341–366.
[31] Y. Zou, Q. Hu, R. Zhang, On numerical studies of multi-point boundary value
problem and its fold bifurcation, Appl. Math. Comput. 185 (2007) 527–537.
[32] L. B. Tomanek and D. S. Stutts, “Thermal conductivity estimation via a multipoint
harmonic one-dimensional convection model,” International Journal of Heat
and Mass Transfer, vol. 186, p. 122467, 2022.
[33] M. Heydari, Z. Avazzadeh, and N. Hosseinzadeh, “Haar wavelet method for solving
high-order differential equations with multi-point boundary conditions,” Journal of
Applied and Computational Mechanics, vol. 8, no. 2, pp. 528–544, 2022.
[34] M. A. Hajji, “Multi-point special boundary-value problems and applications to fluid
flow through porous media,” in Proceedings of International Multi-Conference of
Engineers and Computer Scientists (IMECS 2009), Hong Kong, vol. 31, 2009.
[35] Y. Zou, Q. Hu, and R. Zhang, “On numerical studies of multi-point boundary value
problem and its fold bifurcation,” Applied Mathematics and Computation, vol. 185,
no. 1, pp. 527–537, 2007.
[36] R. P. Agarwal, “On multipoint boundary value problems for discrete equations,”
Journal of Mathematical Analysis and Applications, vol. 96, no. 2, pp. 520–534,
1983.
[37] D. Cao and R. Ma, “Positive solutions to a second order multi-point boundary-value
problem,” 2000.
[38] Sang, Y., & He, L. (2021). Existence of an approximate solution for a class of
fractional multi-point boundary value problems with the derivative term. Boundary
Value Problems, 2021, 1–28. Springer.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *