帳號:guest(52.15.35.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許品潔
作者(外文):Hsu, Pin-Chieh
論文名稱(中文):利用電場調控開發電噴霧離子化質譜儀替代之定量方法
論文名稱(外文):Development of an Alternative Quantification Method for Electrospray Ionization Mass Spectrometry Using Electric Field Modulation
指導教授(中文):帕偉鄂本
指導教授(外文):Urban, Paweł Ł.
口試委員(中文):平松弘嗣
周子勤
口試委員(外文):Hiramatsu, Hirotsugu
Chou, Tsu-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:111023544
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:71
中文關鍵詞:電噴霧質譜儀定量分析定性分析質譜學
外文關鍵詞:Electrospray IonizationSpectrometerQuantitative AnalysisQualitative AnalysisSpectrometry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
通過電噴灑游離質譜法進行的分析通常需要進行多個準備步驟,包括定量校準和質量校準。定量校準可能會受到雜訊的影響,而質量校準則可能會受到質量漂移的影響,特別是在長時間分析過程。本文介紹了兩種實現這些校準的方法,通過交流電場調制電噴灑羽流並解調所得的質譜離子電流。為此,我們在電噴灑源和質譜儀入口之間添加了三個環電極。於其中一個電極片施加正弦波訊號,在質譜上記錄呈現波狀特徵的離子電流。此外,在環電極和質譜儀入口之間添加一個nanoESI發射器以提供校準離子。在第一種變體中,使用快速傅里葉變換(FFT)處理在三重四極桿質譜分析儀的離子電流,所得的FFT幅度與分析物濃度相關,以生成校準圖。在第二種變體中,使用四極桿飛行時間質譜分析儀,在波峰處記錄樣品的m/z 值(通過ESI發射器注入),並使用出現在對應波谷時間間隔內的內部標準的 m/z 值進行質量檢查(通過nanoESI發射器注入)。該裝置已通過模擬軟體進行表徵和優化。總體而言,該方法可以產生數量校準圖,並在長時間分析過程中監測(小幅)m/z 漂移。
Analyses conducted by electrospray ionization (ESI) mass spectrometry (MS) typically entail performing a number of preparatory steps, which include quantity calibration and mass calibration. Quantity calibration can be affected by signal noise while mass calibration can be affected by instrumental drift if analyses are performed over an extended period of time. Here, we present two methods for achieving these calibrations using modulation of electrospray plume by alternating electric fields and demodulating the resulting MS ion currents. For this purpose, we use an ESI source fitted with three ring electrodes between the electrospray emitter and the mass spectrometer’s inlet. One of these electrodes is supplied with a sine electric signal. Optionally, a nanoESI emitter is also placed between the ring electrodes and the mass spectrometer’s orifice to supply calibrant ions. The ion currents—recorded with this setup—present wave-like features. In the first variant—using triple quadrupole mass analyzer—the ion currents are subjected to data treatment by fast Fourier transform (FFT), and the resulting FFT magnitudes are correlated with analyte concentrations to produce a calibration plot. In the second variant—using quadrupole time-of-flight mass analyzer—the mass spectra recorded at the wave maxima are mass-checked using the m/z value of internal standard (injected via nanoESI emitter), which appears predominantly in the time intervals corresponding to wave minima. The setup has been characterized using simulation software and optimized. Overall, the method enables preparation of quantity calibration plots, and monitoring (minor) m/z drifts during prolonged analyses.
中文摘要------i
Abstract------ii
謝誌------iii
Table of Contents------v
List of Tables------vi
List of Figures------vii
List of Acronyms------xiii
Chapter 1: Introduction------1
1.1 Electrospray ionization mass spectrometer------1
1.1.1 Electrospray ionization------2
1.1.2 Mass analyzer------5
1.1.2.1 Quadrupole mass analyzer------7
1.1.2.2 Tandem mass spectrometer------9
1.2 Limitations of electrospray ionization------12
1.2.1 Ionization efficiency and transmission efficiency------12
1.2.2 Matrix interference------13
1.3 Improvement of electrospray ionization------14
1.4 Fast Fourier transforms in analytical chemistry------15
1.5 Goal of this study------18
Chapter 2: Electric Field-Modulated Electrospray Ionization Mass Spectrometry for Quantity Calibration and Mass Tracking------19
2.1 Introduction------19
2.2 Experimental section------21
2.1.1 Chemicals------21
2.2.1 Experimental setup for quantitative analysis by QQQ-MS------21
2.2.2 Experimental setup for qualitative analysis by Q-TOF-MS------24
2.2.3 QQQ-MS data treatment------25
2.2.4 Q-TOF-MS data treatment------26
2.2.5 Calculation of mass and charge of microdroplets for simulations------27
2.3 Results and discussion------28
2.3.1 Numerical simulations of the ESI system with three ring electrodes------28
2.3.2 Application of the developed system in quantitative analysis by QQQ-MS------34
2.3.3 Application of the developed system in qualitative analysis by Q-TOF-MS------40
2.4 Concluding remarks------51
Chapter 3: Conclusions and Future Perspective------52
References------54
Appendix 1------69
Appendix 2------70
Appendix 3------71

1. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.
2. Pramanik, B. N.; Ganguly, A. K.; Gross, M. L. Applied Electrospray Mass Spectrometry: Practical Spectroscopy Series; CRC Press: Boca Raton, FL, 2002.
3. Yamashita, M.; Fenn, J. B. Electrospray Ion Source. Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451− 4459.
4. Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Pavlenko, V. A.; Shkurov, V. A. Extraction of ions from solutions under atmospheric pressure: a method for mass spectrometric analysis of bioorganic compounds. Doklady Akad. Nauk. SSSR 1984, 277, 379–383.
5. Crotti, S.; Seraglia, R.; Traldi, P. Some Thoughts on Electrospray Ionization Mechanisms. Eur. J. Mass Spectrom. 2011, 17, 85–99.
6. Prabhu, G. R. D.; Williams, E. R.; Wilm, M.; Urban, P. L. Mass Spectrometry Using Electrospray Ionization. Nat. Rev. Methods Primers 2023, 3, 1–22.
7. Ibrahim, Y.; Tang, K.; Tolmachev, A. V.; Shvartsburg, A. A.; Smith, R. D. Improving Mass Spectrometer Sensitivity Using a High-Pressure Electrodynamic Ion Funnel Interface. J. Am. Soc. Mass Spectrom. 2006, 17, 1299–1305.
8. Li, C.; Chu, S.; Tan, S.; Yin, X.; Jiang, Y.; Dai, X.; Gong, X.; Fang, X.; Tian, D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective from the Mass Analyzers. Front. Chem. 2021, 9, 813359.
9. Kebarle, P.; Verkerk, U. H. Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrom. Rev. 2009, 28, 898–917.
10. Shi, T.; Su, D.; Liu, T.; Tang, K.; Camp, D. G., 2nd; Qian, W.-J.; Smith, R. D. Advancing the Sensitivity of Selected Reaction Monitoring-Based Targeted Quantitative Proteomics. Proteomics 2012, 12, 1074–1092.
11. Gross J.H. Mass Spectrometry: A Textbook. Springer, Berlin, 2004.
12. Kandiah, M.; Urban, P. L. Advances in Ultrasensitive Mass Spectrometry of Organic Molecules. Chem. Soc. Rev. 2013, 42, 5299.
13. Ho, C. S.; Lam, C. W. K.; Chan, M. H. M.; Cheung, R. C. K.; Law, L. K.; Lit, L. C. W.; Ng, K. F.; Suen, M. W. M.; Tai, H. L. Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications. Clin. Biochem. Rev. 2003, 24, 3–12.
14. Bruins, A. P. Mechanistic Aspects of Electrospray Ionization. J. Chromatogr. A 1998, 794, 345–357.
15. Urban, P. L. Quantitative Mass Spectrometry: An Overview. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150382.
16. Urban, P. L.; Chen, Y. -C.; Wang, Y.-S. Time-Resolved Mass Spectrometry: From Concept to Applications; Wiley: Chichester, 2016.
17. Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207.
18. Yates, J. R., 3rd. Mass Spectral Analysis in Proteomics. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 297–316.
19. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.
20. Hofstadler, S. A.; Sannes-Lowery, K. A. Applications of ESI-MS in Drug Discovery: Interrogation of Noncovalent Complexes. Nat. Rev. Drug Discov. 2006, 5, 585–595.
21. Vejar-Vivar, C.; Bustamante, L.; Lucena, R.; Ortega, C.; Valenzuela, M.; Mardones, C. Direct Coupling of MEPS to ESI-QqTOF-MS for the Simultaneous Analysis of Tricyclic Antidepressants and Benzodiazepines in Postmortem Blood. Microchem. J. 2021, 171, 106797.
22. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030.
23. Avery, M. J. Quantitative Characterization of Differential Ion Suppression on Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometric Bioanalytical Methods. Rapid Commun. Mass Spectrom. 2003, 17, 197–201.
24. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram per Millilitre Concentrations. Anal Chem 1998, 70, 882–889.
25. Lord, R. XX. On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1882, 14, 184–186.
26. Zeleny, J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Phys. Rev. 1914, 3, 69–91.
27. Wilson, C. T. R.; Taylor, G. I. The Bursting of Soap-Bubbles in a Uniform Electric Field. Math. Proc. Camb. Philos. Soc. 1925, 22, 728–730.
28. Macky, W. A. Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields. Proc. R. Soc. Lond. A Math. Phys. Sci. 1931, 133, 565–587.
29. Cloupeau, M.; Prunet-Foch, B. Electrostatic Spraying of Liquids in Cone-Jet Mode. J. Electrostat. 1989, 22, 135–159.
30. Rosell-Llompart, J.; Fernández de la Mora, J. Generation of Monodisperse Droplets 0.3 to 4 Μm in Diameter from Electrified Cone-Jets of Highly Conducting and Viscous Liquids. J. Aerosol Sci. 1994, 25, 1093–1119.
31. Jaworek, A.; Krupa, A. Classification of the Modes of Ehd Spraying. J. Aerosol Sci. 1999, 30, 873–893.
32. Reschke, B. R.; Timperman, A. T. A Study of Electrospray Ionization Emitters with Differing Geometries with Respect to Flow Rate and Electrospray Voltage. J. Am. Soc. Mass Spectrom. 2011, 22, 2115–2124.
33. Han, Z.; Chen, L. C. Generation of Ions from Aqueous Taylor Cones near the Minimum Flow Rate: “True Nanoelectrospray” without Narrow Capillary. J. Am. Soc. Mass Spectrom. 2022, 33, 491–498.
34. Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.
35. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63, 1193A-1203A.
36. Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.
37. Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 63, 2109–2114.
38. Taylor, G. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. Lond. 1964, 280, 383–397.
39. Gomez, A.; Tang, K. Charge and Fission of Droplets in Electrostatic Sprays. Phys. Fluids 1994, 6, 404–414.
40. Zhou, S.; Cook, K. D. A Mechanistic Study of Electrospray Mass Spectrometry: Charge Gradients within Electrospray Droplets and Their Influence on Ion Response. J. Am. Soc. Mass Spectrom. 2001, 12, 206–214.
41. Taflin, D. C.; Ward, T. L.; Davis, E. J. Electrified Droplet Fission and the Rayleigh Limit. Langmuir 1989, 5, 376–384.
42. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85, 2–9.
43. Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.
44. Thomson, J. J. XIX. Further Experiments on Positive Rays. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1912, 24 , 209–253.
45. The Nobel Prize in Physics 1906. Nobelprize.org.
46. Geoghegan, K. F.; Kelly, M. A. Biochemical Applications of Mass Spectrometry in Pharmaceutical Drug Discovery. Mass Spectrom. Rev. 2005, 24, 347–366.
47. Loos, G.; Van Schepdael, A.; Cabooter, D. Quantitative Mass Spectrometry Methods for Pharmaceutical Analysis. Phil. Trans. R. Soc. A. 2016, 374, 20150366.
48. Glish, G. L.; Vachet, R. W. The Basics of Mass Spectrometry in the Twenty-First Century. Nat. Rev. Drug Discov. 2003, 2, 140–150.
49. Douglas, D. J.; Frank, A. J.; Mao, D. Linear Ion Traps in Mass Spectrometry. Mass Spectrom. Rev. 2004, 24, 1–29.
50. Geer Wallace, M. A.; McCord, J. P. High-Resolution Mass Spectrometry. In Breathborne Biomarkers and the Human Volatilome; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier, 2020; pp 253–270.
51. Radionova, A.; Filippov, I.; Derrick, P. J. In Pursuit of Resolution in Time-of-Flight Mass Spectrometry: A Historical Perspective. Mass Spectrom. Rev. 2015, 35, 738–757.
52. Birkler, R. I. D.; Telving, R.; Ingemann-Hansen, O.; Charles, A. V.; Johannsen, M.; Andreasen, M. F. Screening Analysis for Medicinal Drugs and Drugs of Abuse in Whole Blood Using Ultra-Performance Liquid Chromatography Time-of-Flight Mass Spectrometry (UPLC-TOF-MS)--Toxicological Findings in Cases of Alleged Sexual Assault. Forensic Sci. Int. 2012, 222, 154–161.
53. Paul, M.; Ippisch, J.; Herrmann, C.; Guber, S.; Schultis, W. Analysis of New Designer Drugs and Common Drugs of Abuse in Urine by a Combined Targeted and Untargeted LC-HR-QTOFMS Approach. Anal. Bioanal. Chem. 2014, 406, 4425–4441.
54. Heaton, P.; Patel, R. Mass Spectrometry Applications in Infectious Disease and Pathogens Identification. In Principles and Applications of Clinical Mass Spectrometry; Elsevier, 2018; pp 93–114.
55. Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass Spectrom. Rev. 1998, 17, 1–35.
56. Tamara, S.; den Boer, M. A.; Heck, A. J. High-Resolution Native Mass Spectrometry. Chem. Rev. 2021, 122, 7269–7326.
57. Brown, S. C.; Kruppa, G.; Dasseux, J.-L. Metabolomics Applications of FT-ICR Mass Spectrometry. Mass Spectrom. Rev. 2005, 24, 223–231.
58. Ghaste, M.; Mistrik, R.; Shulaev, V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int. J. Mol. Sci. 2016, 17, 816.
59. Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574.
60. De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, 2013.
61. Blaum, K.; Geppert, C.; Müller, P.; Nörtershäuser, W.; Otten, E. W.; Schmitt, A.; Trautmann, N.; Wendt, K.; Bushaw, B. A. Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998, 181, 67–87.
62. Henchman, M.; Steel, C. Understanding the Quadrupole Mass Filter through Computer Simulation. J. Chem. Educ. 1998, 75, 1049.
63. Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected Reaction Monitoring for Quantitative Proteomics: A Tutorial. Mol. Syst. Biol. 2008, 4, 222.
64. Sleno, L.; Volmer, D. A. Ion Activation Methods for Tandem Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1091–1112.
65. Tamara, S.; den Boer, M. A.; Heck, A. J. R. High-Resolution Native Mass Spectrometry. Chem. Rev. 2022, 122, 7269–7326.
66. Riley, N. M.; Westphall, M. S.; Coon, J. J. Activated Ion Electron Transfer Dissociation for Improved Fragmentation of Intact Proteins. Anal. Chem. 2015, 87, 7109–7116.
67. Santos, I. C.; Brodbelt, J. S. Ion Activation Methods for Peptides and Proteins. Anal. Chem. 2020, 92, 227–251.
68. Mittal, R. D. Tandem Mass Spectroscopy in Diagnosis and Clinical Research. Indian J. Clin. Biochem. 2015, 30, 121–123.
69. Hernandez-Alba, O.; Wagner-Rousset, E.; Beck, A.; Cianférani, S. Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Anal. Chem. 2018, 90, 8865–8872.
70. Stephens, W. E.; Serin, B.; Myerhof, W. E. Erratum: A Method for Measuring Effective Contact E.m.f. between a Metal and a Semi-Conductor. Phys. Rev. 1946, 69, 244–244.
71. Haffner, H.; Roos, C.; Blatt, R. Quantum Computing with Trapped Ions. Phys. Rep. 2008, 469, 155–203.
72. Lindon, J. C.; Tranter, G. E.; Holmes, J. L. Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: San Diego, CA, 2017.
73. Louris, J. N.; Wright, L. G.; Cooks, R. G.; Schoen, A. E. New Scan Modes Accessed with a Hybrid Mass Spectrometer. Anal. Chem. 1985, 57, 2918–2924.
74. Levsen, K.; Schiebel, H.-M.; Behnke, B.; Dötzer, R.; Dreher, W.; Elend, M.; Thiele, H. Structure Elucidation of Phase II Metabolites by Tandem Mass Spectrometry: An Overview. J Chromatogr A 2005, 1067, 55–72.
75. Neubauer, G.; Mann, M. Mapping of Phosphorylation Sites of Gel-Isolated Proteins by Nanoelectrospray Tandem Mass Spectrometry: Potentials and Limitations. Anal. Chem. 1999, 71, 235–242.
76. Mann, M.; Jensen, O. N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21, 255–261.
77. Freitas, M. A.; Sklenar, A. R.; Parthun, M. R. Application of Mass Spectrometry to the Identification and Quantification of Histone Post-Translational Modifications. J. Cell. Biochem. 2004, 92, 691–700.
78. Jensen, O. N. Modification-Specific Proteomics: Characterization of Post-Translational Modifications by Mass Spectrometry. Curr. Opin. Chem. Biol. 2004, 8, 33–41.
79. Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J.-P.; Morla, A.; Bouchu, D. ESI‐MS/MS Analysis of Underivatised Amino Acids: A New Tool for the Diagnosis of Inherited Disorders of Amino Acid Metabolism. Fragmentation Study of 79 Molecules of Biological Interest in Positive and Negative Ionisation Mode. Rapid Commun. Mass Spectrom. 2003, 17, 1297–1311.
80. Hossain, M.; Kaleta, D.; Robinson, E.; Liu, T.; Zhao, R.; Page, J.; Kelly, R.; Moore, R.; Tang, K.; Camp, D. Enhanced Sensitivityfor Selected Reaction Monitoring Mass Spectrometry-Based Targeted Proteomics Using a Dual Stage Electrodynamic Ion FunnelInterface. Mol. Cell. Proteom 2011.
81. Domon, B.; Aebersold, R. Mass Spectrometry and Protein Analysis. Science 2006, 312, 212–217.
82. Guo, J.; Turesky, R. J. Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019, 8, 13.
83. Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D. Ionization and Transmission Efficiency in an Electrospray Ionization-Mass Spectrometry Interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582–1590.
84. Cole, R. B. Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 763–772.
85. Goodlett, D. R.; Wahl, J. H.; Udseth, H. R.; Smith, R. D. Reduced Elution Speed Detection for Capillary Electrophoresis/Mass Spectrometry. J. Microcolumn Sep. 1993, 5, 57–62.
86. Wahl, J. H.; Goodlett, D. R.; Udseth, H. R.; Smith, R. D. Use of Small-Diameter Capillaries for Increasing Peptide and Protein Detection Sensitivity in Capillary Electrophoresis-Mass Spectrometry. Electrophoresis. 1993, 14, 448–457.
87. Tang, L.; Kebarle, P. Dependence of Ion Intensity in Electrospray Mass Spectrometry on the Concentration of the Analytes in the Electrosprayed Solution. Anal. Chem. 1993, 65, 3654–3668.
88. Banerjee, S.; Zare, R. N. Influence of Inlet Capillary Temperature on the Microdroplet Chemistry Studied by Mass Spectrometry. J. Phys. Chem. A 2019, 123, 7704–7709.
89. Bruins, A. P. Mass Spectrometry with Ion Sources Operating at Atmospheric Pressure. Mass Spectrom. Rev. 1991, 10, 53–77.
90. Manisali, I.; Chen, D. D. Y.; Schneider, B. B. Electrospray Ionization Source Geometry for Mass Spectrometry: Past, Present, and Future. Trends Analyt. Chem. 2006, 25, 243–256.
91. Bonfiglio, R.; King, R. C.; Olah, T. V.; Merkle, K. The Effects of Sample Preparation Methods on the Variability of the Electrospray Ionization Response for Model Drug Compounds. Rapid Commun. Mass Spectrom. 1999, 13, 1175–1185.
92. King, R.; Bonfiglio, R.; Fernandez-Metzler, C.; Miller-Stein, C.; Olah, T. Mechanistic Investigation of Ionization Suppression in Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 942–950.
93. Stahnke, H.; Kittlaus, S.; Kempe, G.; Hemmerling, C.; Alder, L. The Influence of Electrospray Ion Source Design on Matrix Effects: Influence of ESI Source Design on Matrix Effects. J. Mass Spectrom. 2012, 47, 875–884.
94. Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D. Ionization and Transmission Efficiency in an Electrospray Ionization—Mass Spectrometry Interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582–1590.
95. Kim, T.; Udseth, H. R.; Smith, R. D. Improved Ion Transmission from Atmospheric Pressure to High Vacuum Using a Multicapillary Inlet and Electrodynamic Ion Funnel Interface. Anal. Chem. 2000, 72, 5014–5019.
96. Schneider, B. B.; Javaheri, H.; Covey, T. R. Ion Sampling Effects under Conditions of Total Solvent Consumption. Rapid Commun. Mass Spectrom. 2006, 20, 1538–1544.
97. Schaffer, S. A.; Tang, K.; Anderson, G. A.; Prior, D. C.; Udseth, H. R.; Smith, R. D. A Novel Ion Funnel for Focusing Ions at Elevated Pressure Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1813–1817.
98. Kelly, R. T.; Tolmachev, A. V.; Page, J. S.; Tang, K.; Smith, R. D. The Ion Funnel: Theory, Implementations, and Applications. Mass Spectrom. Rev. 2010, 29, 294–312.
99. Su, P.; Chen, X.; Smith, A. J.; Espenship, M. F.; Samayoa Oviedo, H. Y.; Wilson, S. M.; Gholipour-Ranjbar, H.; Larriba-Andaluz, C.; Laskin, J. Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. Anal. Chem. 2021, 93, 11576–11584.
100. Lee, J. Y.; Kottke, P. A.; Fedorov, A. G. Electrohydrodynamics of Gas-Assisted Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 2073–2085.
101. Kottke, P. A.; Lee, J. Y.; Jonke, A. P.; Seneviratne, C. A.; Hecht, E. S.; Muddiman, D. C.; Torres, M. P.; Fedorov, A. G. DRILL: An Electrospray Ionization-Mass Spectrometry Interface for Improved Sensitivity via Inertial Droplet Sorting and Electrohydrodynamic Focusing in a Swirling Flow. Anal. Chem. 2017, 89, 8981–8987.
102. Tang, K.; Gomez, A. On the Structure of an Electrostatic Spray of Monodisperse Droplets. Phys. Fluids (1994) 1994, 6, 2317–2332.
103. Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.
104. Chetwynd, A. J.; David, A. A Review of Nanoscale LC-ESI for Metabolomics and Its Potential to Enhance the Metabolome Coverage. Talanta 2018, 182, 380–390.
105. Elpa, D. P.; Prabhu, G. R. D.; Wu, S.-P.; Tay, K. S.; Urban, P. L. Automation of Mass Spectrometric Detection of Analytes and Related Workflows: A Review. Talanta 2020, 208, 120304.
106. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram per Millilitre Concentrations. Anal. Chem. 1998, 70, 882–889.
107. Wahab, M. F.; Gritti, F.; O’Haver, T. C. Discrete Fourier Transform Techniques for Noise Reduction and Digital Enhancement of Analytical Signals. Trends Analyt. Chem. 2021, 143, 116354.
108. Guo, H.; Burrus, C. S. Fast Approximate Fourier Transform via Wavelets Transform. In Wavelet Applications in Signal and Image Processing IV; Unser, M. A., Aldroubi, A., Laine, A. F., Eds.; SPIE, 1996.
109. Bergland, G. D. A Guided Tour of the Fast Fourier Transform. IEEE Spectrum 1969, 6, 41–52.
110. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. The Fast Fourier Transform and Its Applications. IEEE Trans. on Education 1969, 12, 27–34.
111. Rudner, B. Signal Processing: Discrete Spectral Analysis, Detection, and Estimation. J. Franklin Inst. 1977, 303, 219–220.
112. Van Loan, C. Computational Frameworks for the Fast Fourier Transform; SIAM: Philadelphia, Pa., 1992.
113. Rabiner, L. R.; Gold, B.; Yuen, C. K. Theory and Application of Digital Signal Processing. IEEE Trans. Syst. Man Cybern. 1978, 8, 146–146.
114. Oppenheim, A. V.; Schafer, R. W.; Shaffer, R. W. Discrete-Time Signal Processing; Prentice-Hall: Prentice-Hall: London, England, 1989.
115. Cooley, J. W.; Tukey, J. W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297.
116. Heideman, M.; Burrus, C. On the Number of Multiplications Necessary to Compute a Length-2nDFT. IEEE Trans. Acoust. 1986, 34, 91–95.
117. Kumaresan, R.; Gupta, P. K. Prime Factor FFT Algorithm with Real Valued Arithmetic. Proc. IEEE. 1985, 73, 1241–1243.
118. Schatzman, J. C. Accuracy of the Discrete Fourier Transform and the Fast Fourier Transform. SIAM J. Sci. Comput. 1996, 17, 1150–1166.
119. Harčarik, T.; Bocko, J.; Masláková, K. Frequency Analysis of Acoustic Signal Using the Fast Fourier Transformation in MATLAB. Procedia Eng. 2012, 48, 199–204.
120. Alexandrov, M. L.; Gall, L. N.; Krasnov, N. V.; Nikolaev, V. I.; Pavlenko, V. A.; Shkurov, V. A. Extraction of Ions from Solutions under Atmospheric Pressure as a Method for Mass Spectrometric Analysis of Bioorganic Compounds. Dokl. Akad. Nauk. SSSR 1984, 277, 379–383.
121. Jemal, M. High-Throughput Quantitative Bioanalysis by LC/MS/MS. Biomed. Chromatogr. 2000, 14, 422–429.
122. Lyutvinskiy, Y.; Yang, H.; Rutishauser, D.; Zubarev, R. A. In Silico Instrumental Response Correction Improves Precision of Label-Free Proteomics and Accuracy of Proteomics-Based Predictive Models. Mol. Cell. Proteomics 2013, 12, 2324–2331.
123. Jiang, F.; Liu, Q.; Li, Q.; Zhang, S.; Qu, X.; Zhu, J.; Zhong, G.; Huang, M. Signal Drift in Liquid Chromatography Tandem Mass Spectrometry and Its Internal Standard Calibration Strategy for Quantitative Analysis. Anal. Chem. 2020, 92, 7690–7698.
124. Juraschek, R.; Röllgen, F. W. Pulsation Phenomena during Electrospray Ionization. Int. J. Mass Spectrom. 1998, 177, 1–15.
125. Ghosh, C.; Shinde, C. P.; Chakraborty, B. S. Influence of Ionization Source Design on Matrix Effects during LC-ESI-MS/MS Analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 893–894, 193–200.
126. Romson, J.; Emmer, Å. Mass Calibration Options for Accurate Electrospray Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2021, 467, 116619.
127. Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. An Introduction to Quadrupole–Time‐of‐flight Mass Spectrometry. J. Mass Spectrom. 2001, 36, 849–865.
128. Satomi, Y.; Kudo, Y.; Sasaki, K.; Hase, T.; Takao, T. Accurate Mass Measurement in Nano‐electrospray Ionization Mass Spectrometry by Alternate Switching of High Voltage between Sample and Reference Sprayers. Rapid Commun. Mass Spectrom. 2005, 19, 540–546.
129. Zubarev, R.; Mann, M. On the Proper Use of Mass Accuracy in Proteomics. Mol. Cell. Proteomics 2007, 6, 377–381.
130. Eckers, C.; Wolff, J.-C.; Haskins, N. J.; Sage, A. B.; Giles, K.; Bateman, R. Accurate Mass Liquid Chromatography/Mass Spectrometry on Orthogonal Acceleration Time-of-Flight Mass Analyzers Using Switching between Separate Sample and Reference Sprays. 1. Proof of Concept. Anal. Chem. 2000, 72, 3683–3688.
131. Jiang, L.; Moini, M. Development of Multi-ESI-Sprayer, Multi-Atmospheric-Pressure-Inlet Mass Spectrometry and Its Application to Accurate Mass Measurement Using Time-of-Flight Mass Spectrometry. Anal. Chem. 2000, 72, 885–885.
132. Flora, J. W.; Null, A. P.; Muddiman, D. C. Dual-Micro-ESI Source for Precise Mass Determination on a Quadrupole Time-of-Flight Mass Spectrometer for Genomic and Proteomic Applications. Anal. Bioanal. Chem. 2002, 373, 538–546.
133. Satomi, Y.; Kudo, Y.; Sasaki, K.; Hase, T.; Takao, T. Accurate Mass Measurement in Nano-Electrospray Ionization Mass Spectrometry by Alternate Switching of High Voltage between Sample and Reference Sprayers. Rapid Commun. Mass Spectrom. 2005, 19, 540–546.
134. Bushey, J. M.; Kaplan, D. A.; Danell, R. M.; Glish, G. L. Pulsed Nano-Electrospray Ionization: Characterization of Temporal Response and Implementation with a Flared Inlet Capillary. Instrum. Sci. Technol. 2009, 37, 257–273.
135. Hannis, J. C.; Muddiman, D. C. A Dual Electrospray Ionization Source Combined with Hexapole Accumulation to Achieve High Mass Accuracy of Biopolymers in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 876–883.
136. Wolff, J. C.; Eckers, C.; Sage, A. B.; Giles, K.; Bateman, R. Accurate Mass Liquid Chromatography/Mass Spectrometry on Quadrupole Orthogonal Acceleration Time-of-Flight Mass Analyzers Using Switching between Separate Sample and Reference Sprays. 2. Applications Using the Dual-Electrospray Ion Source. Anal. Chem. 2001, 73, 2605–2612.
137. Nepomuceno, A. I.; Muddiman, D. C.; Bergen, H. R.; Craighead, J. R.; Burke, M. J.; Caskey, P. E.; Allan, J. A. Dual Electrospray Ionization Source for Confident Generation of Accurate Mass Tags Using Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2003, 75, 3411–3418.
138. Leclercq, L.; Delatour, C.; Hoes, I.; Brunelle, F.; Labrique, X.; Castro-Perez, J. Use of a Five‐channel Multiplexed Electrospray Quadrupole Time‐of‐flight Hybrid Mass Spectrometer for Metabolite Identification. Rapid Commun. Mass Spectrom. 2005, 19, 1611–1618.
139. Takahashi, Y.; Fujimaki, S.; Kobayashi, T.; Morita, T.; Higuchi, T. Accurate Mass Determination by Multiple Sprayers Nano-Electrospray Mass Spectrometry on a Magnetic Sector Instrument. Rapid Commun. Mass Spectrom. 2000, 14, 947–949.
140. Li, Y.; Zhang, N.; Zhou, Y.; Wang, J.; Zhang, Y.; Wang, J.; Xiong, C.; Chen, S.; Nie, Z. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement. J. Am. Soc. Mass Spectrom. 2013, 24, 1446–1449.
141. Fernández, F. M.; Vadillo, J. M.; Kimmel, J. R.; Wetterhall, M.; Markides, K.; Rodriguez, N.; Zare, R. N. Hadamard Transform Time-of-Flight Mass Spectrometry: A High-Speed Detector for Capillary-Format Separations. Anal. Chem. 2002, 74, 1611–1617.
142. Zare, R. N.; Fernández, F. M.; Kimmel, J. R. Hadamard Transform Time-of-Flight Mass Spectrometry: More Signal, More of the Time. Angew. Chem. Int. Ed Engl. 2003, 42, 30–35.
143. Trudgett, M. J. E.; Guiochon, G.; Shalliker, R. A. Theoretical Description of a New Analytical Technique: Comprehensive Online Multidimensional Fast Fourier Transform Separations. J. Chromatogr. A 2011, 1218, 3545–3554.
144. Cheng, Y.-K.; Lin, C.-H.; Kaneta, T.; Imasaka, T. Applications of Hadamard Transform-Gas Chromatography/Mass Spectrometry to Online Detection of Exhaled Breath after Drinking or Smoking. J. Chromatogr. A 2010, 1217, 5274–5278.
145. Yoon, O. K.; Zuleta, I. A.; Kimmel, J. R.; Robbins, M. D.; Zare, R. N. Duty Cycle and Modulation Efficiency of Two-Channel Hadamard Transform Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1888–1901.
146. Shen, H.; Jia, X.; Meng, Q.; Liu, W.; Hill, H. H. Fourier Transform Ion Mobility Spectrometry with Multinozzle Emitter Array Electrospray Ionization. RSC Adv. 2017, 7, 7836–7842.
147. Allen, P. B.; Doepker, B. R.; Chiu, D. T. Fourier Transform Capillary Electrophoresis with Laminar-Flow Gated Pressure Injection. Anal. Chem. 2007, 79, 6807–6815.
148. Filla, R. T.; Schrell, A. M.; Coulton, J. B.; Edwards, J. L.; Roper, M. G. Frequency-Modulated Continuous Flow Analysis Electrospray Ionization Mass Spectrometry (FM-CFA-ESI-MS) for Sample Multiplexing. Anal. Chem. 2018, 90, 2414–2419.
149. Hsu, C.-Y.; Prabhu, G. R. D.; Chang, C.-H.; Hsu, P.-C.; Buchowiecki, K.; Urban, P. L. Are Most Micrometer Droplets (>10 μm) Wasted in Electrospray Ionization? An Insight from Real-Time High-Speed Imaging. Anal. Chem. 2023, 95, 14702–14709.
150. Prabhu, G. R. D.; Witek, H. A.; Urban, P. L. Programmable Flow Rate Scanner for Evaluating Detector Sensitivity Regime. Sens. Actuators B Chem. 2019, 282, 992–998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *