帳號:guest(18.221.102.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):丘硯文
作者(外文):Chiou, Yen-Wen
論文名稱(中文):具烷基橋電子供體-受體陽離子電荷轉移與構型緩解動力學之超快光游離-光裂解光譜研究
論文名稱(外文):Ultrafast Photoionization-Photofragmentation Spectroscopic Studies of Charge Transfer and Conformational Relaxation Dynamics in Electron Donor-Acceptor Cations with Alkyl Bridges
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):張君輔
周佳駿
口試委員(外文):Chang, Chun-Fu
Chou, Chia-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:111023536
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:186
中文關鍵詞:飛秒脈衝雷射共振增益多光子游離光游離-光裂解飛行時間質譜儀電子供體-受體陽離子氣相電荷轉移
外文關鍵詞:femtosecond pulsed laserresonance-enhanced multiphoton ionizationphotoionization-photofragmentationtime-of-flight mass spectrometerElectron Donor-Acceptor Cationsgas phasecharge transfer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
我們透過飛秒激發-探測光譜技術結合飛行時間質譜(TOF-MS)技術,量測MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine)及MPBA (N-methyl-4-phenylbutylamine)分子於光游離-光裂解機制下所產生的離子損耗瞬時訊號,以研究電子供體受體陽離子的緩解動力學過程。我們以波長為266 nm激發雷射脈衝透過1+1 REMPI的方式激發分子使苯環端局部游離,以形成正電荷主要位於苯環端的初始陽離子D1/D2 state,隨後陽離子會透過內轉換過程從D1/D2 state緩解至正電荷於胺基端的D0 state,此過程相當於電荷轉移(charge transfer)。在緩解的過程中,我們再利用另一道低脈衝能量的探測雷射脈衝將陽離子激發至更高的能態造成母陽離子裂解成碎片離子,進而獲得母陽離子的離子損耗瞬時訊號,並以此瞬時訊號研究MNMA及MPBA陽離子的緩解動力學過程。我們結合理論計算及預期無電荷轉移之PPAL (phenylpropyl alcohol)陽離子的實驗結果,確定由離子損耗瞬時訊號擬合結果之τ1為陽離子D1/D2 state緩解至陽離子D0 state的電荷轉移時間常數(0.07~0.28 ps),陽離子D0 state的初始構型應與中性S0 state主要構型雷同,但由於正電荷從苯環端轉移至胺基端,導致胺基端受庫倫作用力驅動而大幅度向苯環端靠近,在時間常數τ2 (7~26 ps)後緩解至較穩定構型。最後,較穩定構型會繼續發生平衡緩解至以最穩定構型為主的D0 state構型,此過程可能需克服較大的能障,使得其時間常數τ3 較長(210~550 ps)。
In this thesis, we measured the ion depletion transient of MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine) and MPBA (N-methyl-4-phenylbutylamine) molecules through the photoionization-photofragmentation mechanisms to investigate the relaxation dynamics of electron donor-acceptor molecular cations by using femtosecond pump-probe spectroscopy combined with time-of-flight mass spectrometry (TOF-MS).We used a pump pulse at 266 nm to excite the molecules through 1+1 resonance-enhanced multiphoton ionization (1+1 REMPI), leading to local ionization at the phenyl ring and forming initial cations with the positive charge predominantly located at the phenyl ring site in the D1/D2 state. The cations subsequently relaxed to the D0 state, in which the positive charge is located at the amine site, via internal conversion that correspond to a charge transfer process. During the relaxation process, another probe laser pulse with a low pulse energy was used to excite the cations to higher energy states, causing the parent cations to fragment. This provided parent ion depletion transients, which reveal the relaxation dynamics of MNMA and MPBA cations. We combined theoretical calculations and experimental results for PPAL (phenylpropyl alcohol) cations, which are expected to exhibit no charge transfer to confirm that τ1 obtained from kinetics fitting of the ion depletion transients is due to the charge transfer for the relaxation from the D1/D2 state to the D0 state (0.07~0.28 ps). Additionally, the initial conformation of the cation in the D0 state is expected to be similar to the major conformation of the neutral S0 state. Subsequently, as the positive charge transfers from the phenyl ring site to the amine site, the amine group is driven by Coulombic forces to move significantly closer to the phenyl ring group, relaxing to a more stable conformation with the time constant τ2 (7~26 ps). Finally, this more stable conformation continues to undergo an equilibrium relaxation to the D0 state distribution dominated by the most stable conformation. This process probably requires overcoming a larger energy barrier, leading to the observed longer time constant τ3 (210~550 ps).
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 v
第一章 緒論 1
1.1 引文 1
1.2 文獻回顧 3
1.3 研究動機 10
第二章 實驗方法與技術 15
2.1 飛秒激發-探測技術 15
2.2 共振增強多光子游離技術 17
2.3 激發-探測光激發-光游離以及激發-探測光游離-光裂解 18
2.3.1 激發-探測光激發-光游離機制 (Pump-Probe PE-PI) 18
2.3.2 激發-探測光游離-光裂解機制 (Pump-Probe PI-PF) 18
2.4 飛秒脈衝雷射系統 20
2.4.1 振盪器系統 21
2.4.2 脈衝能量放大器 28
2.5 波長調變裝置 35
2.5.1 三倍頻非線性光學混頻區-Third Harmonic Generator 36
2.5.2 波長調變器:TOPAS 37
2.5.3 和頻非線性光學混頻區-Sum Frequency Generator 40
2.5.4 二倍頻非線性光學區-Second Harmonic Generator 42
2.6 分子束系統 43
2.6.1 超音速分子束 44
2.6.2 分子束樣品進樣裝置 48
2.6.3 分子束系統架設 48
2.7 飛行時間質譜儀 51
2.8 實驗光路設計 54
2.9 訊號擷取系統 57
2.10 儀器響應函數 61
2.11 藥品來源 62
第三章 實驗結果 63
3.1 MNMA及MPBA分子之1+1 REMPI質譜圖分析 63
3.2 母離子與碎片離子訊號對激發雷射脈衝能量的相依性 65
3.2.1 MNMA分子質譜訊號對激發雷射脈衝能量相依性 65
3.2.2 MPBA分子質譜訊號對激發雷射脈衝相依性 68
3.3 MNMA激發-探測光游離-光裂解實驗條件 70
3.3.1 激發及探測脈衝能量比例對離子瞬時訊號之影響 70
3.3.2 陽離子損耗瞬時訊號驗證 73
3.3.3 離子損耗瞬時訊號對探測雷射脈衝能量之相依性 75
3.3.4 離子損耗率之量測 77
3.3.5 離子損耗率對雷射脈衝能量的相依性 79
3.3.6 各探測波長下測量離子損耗率所使用之探測雷射脈衝能量條件 83
3.4 MNMA離子損耗瞬時訊號及超快時間解析離子光分解光譜 85
3.4.1 短時間及極短時間尺度之MNMA陽離子損耗瞬時訊號 85
3.4.2 中時間與長時間尺度之MNMA陽離子損耗瞬時訊號 88
3.4.3 MNMA陽離子損耗瞬時訊號之動力學模型擬合結果 92
3.4.4 MNMA陽離子超快時間解析光分解光譜 99
3.5 MPBA離子損耗瞬時訊號及超快時間解析離子光分解光譜 105
3.5.1 MPBA陽離子損耗瞬時訊號 105
3.5.2 MPBA陽離子損耗瞬時訊號之動力學模型擬合結果 108
3.5.3 MPBA陽離子超快時間解析光分解光譜 112
3.6 無電荷轉移對照組 114
3.6.1 PPAL分子質譜圖 115
3.6.2 PPAL陽離子損耗瞬時訊號 115
3.6.3 PPAL陽離子損耗瞬時訊號之動力學模型擬合結果 119
3.6.4 PPAL超快時間解析離子光分解光譜 124
第四章 理論計算與綜合討論 125
4.1 MNMA分子之理論計算與實驗結果討論 125
4.2 MPBA分子之理論計算與實驗結果討論 138
第五章 結論 150
參考文獻 152
附錄 156
附錄 Ⅰ MNMA陽離子損耗瞬時訊號之動力學模型擬合結果 156
附錄 Ⅱ MNMA分子中性S0 state分子構型計算結果 172
附錄 Ⅲ MPBA分子中性S0 state分子構型計算結果 175
附錄 Ⅳ MNMA及MPBA陽離子D0 state構型計算結果 179
附錄 Ⅴ MNMA中性S0 state 36種構型實際結構圖 180
附錄 Ⅵ MPBA中性S0 state 17種構型實際結構圖 182
附錄 Ⅶ MNMA陽離子D0 state 23種構型實際結構圖 183
附錄 Ⅷ MPBA陽離子D0 state 13種構型實際結構圖 185

參考文獻
1. Lyu, S.; Y. Farré; L. Ducasse; Y. Pellegrin; T. Toupance; C. Olivier; F. Odobel. Push–pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Adv. 2016, 6(24), 19928-19936.
2. Shin, H.; B.M. Kim; T. Jang; K.M. Kim; D.H. Roh; J.S. Nam; J.S. Kim; U.Y. Kim; B. Lee; Y. Pang. Surface State‐Mediated Charge Transfer of Cs2SnI6 and Its Application in Dye‐Sensitized Solar Cells. Adv. Energy Mater. 2019, 9(3), 1803243.
3. Wang, X.; B. Zhao; W. Kan; Y. Xie; K. Pan. Review on low‐cost counter electrode materials for dye‐sensitized solar cells: effective strategy to improve photovoltaic performance. Adv. Mater. Interfaces. 2022, 9(2), 2101229.
4. Lin, Z.; A. McCreary; N. Briggs; S. Subramanian; K.H. Zhang; Y.F. Sun; X.F. Li; N.J. Borys; H.T. Yuan; S.K. Fullerton-Shirey; A. Chernikov; H. Zhao; S. McDonnell; A.M. Lindenberg; K. Xiao; B.J. LeRoy; M. Drndic; J.C.M. Hwang; J. Park; M. Chhowalla; R.E. Schaak; A. Javey; M.C. Hersam; J. Robinson; M. Terrones. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2d Mater. 2016, 3(4).
5. Schlag, E.W.; S.Y. Sheu; D.Y. Yang; H.L. Selzle; S.H. Lin. Distal charge transport in peptides. Angew. Chem. Int. Ed. 2007, 46(18), 3196-3210.
6. Shah, A.; B. Adhikari; S. Martic; A. Munir; S. Shahzad; K. Ahmad; H.-B. Kraatz. Electron transfer in peptides. Chem Soc Rev. 2015, 44(4), 1015-1027.
7. Yu, J.; J.R. Horsley; K.E. Moore; J.G. Shapter; A.D. Abell. The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. ChemComm. 2014, 50(14), 1652-1654.
8. Kawai, K.; T. Majima. Hole transfer kinetics of DNA. Acc. Chem. Res. 2013, 46(11), 2616-2625.
9. Isied, S.S.; M.Y. Ogawa; J.F. Wishart. Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chem. Rev. 1992, 92(3), 381-394.
10. Lewis, F.D.; R.L. Letsinger; M.R. Wasielewski. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chem. Res. 2001, 34(2), 159-170.
11. Adams, D.M.; L. Brus; C.E. Chidsey; S. Creager; C. Creutz; C.R. Kagan; P.V. Kamat; M. Lieberman; S. Lindsay; R.A. Marcus. Charge transfer on the nanoscale: current status. J. Phys. Chem. B. 2003, 107(28), 6668-6697.
12. Gilbert, M.; B. Albinsson. Photoinduced charge and energy transfer in molecular wires. Chem Soc Rev. 2015, 44(4), 845-862.
13. Davis, W.B.; W.A. Svec; M.A. Ratner; M.R. Wasielewski. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature. 1998, 396(6706), 60-63.
14. Jortner, J.; M. Bixon; B. Wegewijs; J.W. Verhoeven; R.P. Rettschnick. Long-range, photoinduced charge separation in solvent-free donor—bridge—acceptor molecules. Chem. Phys. Lett. 1993, 205(4-5), 451-455.
15. Bixon, M.; J. Jortner; J. Cortes; H. Heitele; M. Michel-Beyerle. Energy gap law for nonradiative and radiative charge transfer in isolated and in solvated supermolecules. J. Phys. Chem. 1994, 98(30), 7289-7299.
16. Weinkauf, R.; P. Schanen; D. Yang; S. Soukara; E. Schlag. Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 1995, 99(28), 11255-11265.
17. 鄭博元. Conference in Memory of the Nobel Laureate Ahmed Zewail 演講之投影片. 2018.
18. Weinkauf, R.; L. Lehr; A. Metsala. Local ionization in 2-phenylethyl-N, N-dimethylamine: charge transfer and dissociation directly after ionization. J. Phys. Chem. A. 2003, 107(16), 2787-2799.
19. Lehr, L.; T. Horneff; R. Weinkauf; E. Schlag. Femtosecond dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. J. Phys. Chem. A. 2005, 109(36), 8074-8080.
20. Cheng, W.; N. Kuthirummal; J.L. Gosselin; T.I. Sølling; R. Weinkauf; P.M. Weber. Control of local ionization and charge transfer in the bifunctional molecule 2-phenylethyl-N, N-dimethylamine using Rydberg fingerprint spectroscopy. J. Phys. Chem. A. 2005, 109(9), 1920-1925.
21. Sun, S.; B. Mignolet; L. Fan; W. Li; R.D. Levine; F. Remacle. Nuclear motion driven ultrafast photodissociative charge transfer of the penna cation: An experimental and computational study. J. Phys. Chem. A. 2017, 121(7), 1442-1447.
22. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究. 碩士論文, 國立清華大學, 新竹市. 2018.
23. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 碩士論文, 國立清華大學, 新竹市. 2019.
24. Li, S.; E. Bernstien; J. Seeman. Stable conformations of benzylamine and N, N-dimethylbenzylamine. J. Phys. Chem. 1992, 96(22), 8808-8813.
25. Sun, S.; E. Bernstein. Spectroscopy of neurotransmitters and their clusters. 1. Evidence for five molecular conformers of phenethylamine in a supersonic jet expansion. J. Am. Chem. Soc. 1996, 118(21), 5086-5095.
26. Law, K.; E. Bernstein. Molecular jet study of van der Waals complexes of flexible molecules: n‐Propyl benzene solvated by small alkanesa. J. Chem. Phys. 1985, 82(7), 2856-2866.
27. 紀泓瑋. 超快光游離誘發雙官能基陽離子之電荷轉移動態學研究. 碩士論文, 國立清華大學, 新竹市. 2021.
28. 顏暐儒. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究. 碩士論文, 國立清華大學, 新竹市. 2020.
29. 呂柏昀. 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學. 碩士論文, 國立清華大學, 新竹市. 2022.
30. 蘇培鈞. 以超快時間解析光分解光譜研究具剛性環烷基橋雙官能基陽離子之電荷轉移與構型緩解動態學. 碩士論文, 國立清華大學, 新竹市. 2023.
31. 楊鈞郡. 具剛性環烷基雙官能基陽離子之光游離誘發超快電荷轉移與構型緩解動態學研究. 碩士論文, 國立清華大學, 新竹市. 2023.
32. Frisch, M.; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G. Petersson, Gaussian 09, revision D. 01. Gaussian. 2009: Wallingford, CT.
33. Frisch, M.J.; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; G. Scalmani; V. Barone; G.A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A.V. Marenich; J. Bloino; B.G. Janesko; R. Gomperts; B. Mennucci; H.P. Hratchian; J.V. Ortiz; A.F. Izmaylov; J.L. Sonnenberg; Williams; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V.G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J.A. Montgomery Jr.; J.E. Peralta; F. Ogliaro; M.J. Bearpark; J.J. Heyd; E.N. Brothers; K.N. Kudin; V.N. Staroverov; T.A. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A.P. Rendell; J.C. Burant; S.S. Iyengar; J. Tomasi; M. Cossi; J.M. Millam; M. Klene; C. Adamo; R. Cammi; J.W. Ochterski; R.L. Martin; K. Morokuma; O. Farkas; J.B. Foresman; D.J. Fox, Gaussian 16 Rev. C.01. 2016: Wallingford, CT.
34. Kendall, R.A.; T.H. Dunning; R.J. Harrison. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96(9), 6796-6806.
35. Woon, D.E.; T.H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98(2), 1358-1371.
36. Yanai, T.; D.P. Tew; N.C. Handy. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393(1-3), 51-57.
37. Chai, J.-D.; M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. PCCP. 2008, 10(44), 6615-6620.
38. Curtiss, L.A.; P.C. Redfern; K. Raghavachari. Gaussian-4 theory. J. Chem. Phys. 2007, 126(8).
39. Curtiss, L.A.; P.C. Redfern; K. Raghavachari. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 2007, 127(12).
40. Amirav, A.; U. Even; J. Jortner. Cooling of large and heavy molecules in seeded supersonic beams. Chem. Phys. 1980, 51(1-2), 31-42.
41. Corinti, D.; D. Catone; S. Turchini; F. Rondino; M.E. Crestoni; S. Fornarini. Photoionization mass spectrometry of ω-phenylalkylamines: Role of radical cation-π interaction. J. Chem. Phys. 2018, 148(16).
42. Becke, A.D. Densityfunctional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 1993, 98(7), 5648–5652.
43. Ernzerhof, M.; J.P. Perdew. Generalized gradient approximation to the angle-and system-averaged exchange hole. J. Chem. Phys. 1998, 109(9), 3313-3320.
44. Yu, H.S.; X. He; S.L. Li; D.G. Truhlar. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions Chem. Sci. 2016, 7(9), 6278-6279.
45. Wood, G.P.; L. Radom; G.A. Petersson; E.C. Barnes; M.J. Frisch; J.A. Montgomery. A restricted-open-shell complete-basis-set model chemistry. J. Chem. Phys. 2006, 125(9).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以超快時間解析光分解光譜研究具剛性環烷基橋雙官能基陽離子之電荷轉移與構型緩解動態學
2. 以超快時間解析光裂解光譜研究具烷基橋之電子供體-受體陽離子電荷轉移及構型緩解動力學
3. 以飛秒光游離-光裂解光譜法研究雙官能基陽離子電荷轉移動態學
4. 具剛性環烷基橋雙官能基陽離子之光游離誘發超快電荷轉移與構型緩解動態學研究
5. N,N-二甲基-3-苯基丙基胺陽離子內之超快光游離誘發電荷轉移動態學研究
6. 光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究
7. 以超快時間解析光分解光譜研究光游離誘發雙官能基陽離子電荷轉移動態學
8. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
9. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
10. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
11. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
12. 分子衍生物在溶液中單體與聚集體之光譜研究
13. 氣相飛秒瞬時吸收光譜之建立與應用
14. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
15. 利用簡併四波混頻光譜法在超音波射束中研究HS自由基之高預解離電子態A2Σ+
 
* *