帳號:guest(3.136.236.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林則旻
作者(外文):Lin, Ze-Min
論文名稱(中文):以瞬態吸收光譜法研究硫酸根自由基之反應動力學及其與甲醇反應之動力學同位素效應
論文名稱(外文):Reaction kinetics of sulfate radical and the kinetic isotope effect on the reaction of sulfate radical and methanol probed by transient absorption spectroscopy
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):張元賓
羅佩凌
口試委員(外文):Chang, Yuan-Pin
Luo, Pei-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:111023523
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:79
中文關鍵詞:瞬態吸收光譜法硫酸根自由基動力學甲醇動力學同位素效應
外文關鍵詞:transient absorption spectroscopysulfate radicalreaction kineticsmethanolkinetic isotope effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
硫酸根自由基(sulfate radical, SO4-)具有較高的還原電位,常用於降解汙染物,稱為硫酸根自由基高級氧化程序(sulfate-radical-based advanced oxidation processes, SR-AOPs)。此方法中常以紫外光照射過硫酸鈉(sodium persulfate, Na2S2O8)產生硫酸根自由基,且根據前人文獻,當過硫酸根高於特定濃度時,會競爭硫酸根自由基使分解汙染物的效率降低,因此決定硫酸根自由基與過硫酸根之反應速率常數至關重要,但在過往文獻未有一致的結果。故吾人以瞬態吸收光譜法偵測不同濃度過硫酸鈉水溶液經266 nm脈衝雷射光解後,產生於455 nm之硫酸根自由基差異吸收度時間側寫。硫酸根自由基消逝途徑主要透過自身再結合(Rrecom)及與過硫酸根的雙分子(Rbi)反應,二者的反應速率常數分別以krecom及kbi表示。吾人以硫酸根自由基再結合反應積分速率定律式獲得krecom約為(8.8 - 10.8) × 10^8 M-1 s-1,並計算於實驗條件下的Rrecom/Rbi = 75 - 170,二者結果顯示硫酸根自由基消逝途徑以其自身再結合反應為主。但若僅藉由積分速率定律式及Rrecom/Rbi的分析將無法正確地描述其差異吸收度時間側寫,故吾人以非線性動力學方法模擬不同過硫酸鈉初始濃度對其差異吸收度時間側寫之影響,以kbi = 1.0 × 10^4 M-1 s-1模擬結果和實驗較吻合。過往研究中曾提出甲醇與硫酸根自由基之反應速率常數,但為較早期的結果,且較少對於該反應之動力學同位素效應(kinetic isotope effects, KIE)進行探討,故吾人以上述瞬態吸收光譜法研究15 - 55°C之過硫酸鈉和(氘代)甲醇混合水溶液經光解後,產生之硫酸根自由基與(氘代)甲醇之準一級反應速率常數(kMeOH),而結果顯示kMeOH與溫度無關。此外,若將甲醇羥基的氫置換為氘時,平均kMeOH幾乎不變;而將甲醇碳上的氫置換為氘時,平均kMeOH下降,其KIE約為2,顯示硫酸根自由基與甲醇反應涉及α碳上的氫而非羥基的氫。
Sulfate radical (SO4-) possesses a high reduction potential and has been widely used in the sulfate-radical-based advanced oxidation processes (SR-AOPs) for degrading pollutants. Generally, SO4- is generated by the ultraviolet photolysis of sodium persulfate (Na2S2O8). In principle, the increase in the [S2O82-] can enhance the efficiency of contaminant degradation. However, exceeding a specific concentration of S2O82- can lead to a decrease in contaminant degradation efficiency due to competitive reactions of S2O82- + SO4-. Therefore, the reaction rate constant of SO4- + S2O82- is crucial for understanding the contributions of this competitive reaction. In this study, UV-Vis transient absorption spectroscopy was used to probe the kinetics of SO4- at 455 nm upon pulsed 266 nm excitation of S2O82- solutions at different initial concentrations. Generally, SO4- decay was dominated by the recombination reaction of SO4- (Rrecom) and bimolecular reaction with S2O82- (Rbi), with the reaction rate coefficients krecom and kbi, respectively. krecom was determined to be approximately (8.8 - 10.8) × 10^8 M-1 s-1 by the integrated rate law of recombination reactions, and the corresponding ratio Rrecom/Rbi was 75-170, indicating that the recombination reaction majorly dominated the decay of SO4-. However, the result of kinetics are not sufficient to illustrate the decay of SO4-. Therefore, non-linear kinetics simulations were performed to simulate the temporal profiles of SO4-, and the simulation results with kbi = 1.0 × 10^4 M-1 s-1 agreed with the experimental data. In addition, the reaction rate coefficients between methanol (CH3OH) and SO4- has been reported decades ago, and the kinetic isotope effects (KIE) of this reaction has not been greatly investigated. The transient absorption spectroscopy was used to investigate the pseudo-first-order reaction rate coefficients (kMeOH) between SO4- and CH3OH isotopologues in 15 - 55°C. The results showed that kMeOH is independent of temperature. Additionally, replacing the hydrogen in hydroxyl group with deuterium did not alter to averaged kMeOH; replacing the hydrogen in α carbon with deuterium caused a decrease in the average kMeOH, with a KIE of approximately 2. This indicates that the reaction between SO4- and CH3OH involves the α hydrogen abstraction rather than the hydroxyl group.
摘要
Abstract
目錄
第一章 緒論..........................................................1
1.1氣溶膠於大氣反應之重要性............................................2
1.1.1氣溶膠的來源與組成...............................................2
1.1.2濕氣溶膠於大氣中提供的反應環境....................................2
1.2大氣中硫化物之反應.................................................3
1.2.1硫循環..........................................................3
1.2.2大氣中二氧化硫之相關反應..........................................3
1.2.3硫酸根自由基之相關反應............................................4
1.3硫酸根自由基高級氧化程序............................................5
1.4大氣中甲醇之來源與反應..............................................7
1.5動力學同位素效應...................................................7
1.5.1一級動力學同位素效應.............................................8
1.5.2二級動力學同位素效應............................................10
1.6研究動機.........................................................10
參考文獻............................................................20
第二章 光譜技術原理、實驗系統與樣品溶液製備............................29
2.1 穩態紫外/可見吸收光譜法...........................................29
2.1.1穩態紫外/可見吸收光譜法原理......................................29
2.2瞬態吸收光譜法....................................................30
2.2.1實驗系統架設....................................................30
2.2.2雷射光解系統....................................................31
2.2.3樣品推進系統....................................................31
2.2.4溫度控制系統....................................................31
2.2.5實驗步驟.......................................................32
2.2.6實驗系統儀器參數設定............................................32
2.3樣品溶液製備......................................................32
2.3.1過硫酸鈉水溶液..................................................33
2.3.2甲醇水溶液.....................................................33
2.3.3過硫酸鈉/(氘代)甲醇 = 50/40 mM之混合水溶液.......................33
參考文獻............................................................42
第三章 以MATLAB軟體進行非線性動力學模擬...............................43
3.1 MATLAB軟體......................................................43
3.2 MATLAB於化學動力學上的應用.......................................43
3.3常微分方程式之程式庫..............................................44
3.4運算流程.........................................................45
3.4.1 Formula.......................................................45
3.4.2 Simulation....................................................46
參考文獻............................................................48
第四章 結果與討論....................................................49
4.1過硫酸鈉與甲醇混合水溶液之穩態紫外吸收光譜..........................49
4.2硫酸根自由基差異吸收度時間側寫與動力學分析..........................50
4.2.1瞬態吸收系統於時間初期的干擾訊號.................................50
4.2.2過硫酸鈉濃度對硫酸根自由基時間側寫之影響..........................50
4.2.3以非線性動力學方法數值模擬過硫酸鈉水溶液初始濃度對硫酸根自由基濃度時間側寫之影響..........................................................52
4.2.4過硫酸鈉受雷射激發之光解量估計...................................53
4.3滿足準一級反應之(氘代)甲醇的濃度用於與過硫酸鈉反應...................54
4.4硫酸根自由基與(氘代)甲醇反應之動力學分析............................56
4.5硫酸根自由基與(氘代)甲醇反應速率常數受動力學同位素效應之影響..........56
參考文獻............................................................74
第五章 結論.........................................................76
附錄................................................................77
附錄一 Formula檔....................................................77
附錄二 Simulation檔.................................................79
第一章 緒論
[1] Tie, X.; Cao, J. Aerosol Pollution in China: Present and Future Impact on Environment. Particuology 2009, 7, 426-431.
[2] Mahowald, N.; Ward, D. S.; Kloster, S.; Flanner, M. G.; Heald, C. L.; Heavens, N. G.; Hess, P. G.; Lamarque, J.-F.; Chuang, P. Y. Aerosol Impacts on Climate and Biogeochemistry. Annu. Rev. Environ. Resour. 2011, 36, 45-74.
[3] Ervens, B.; Turpin, B. J.; Weber, R. J. Secondary Organic Aerosol Formation in Cloud Droplets and Aqueous Particles (aqSOA): A Review of Laboratory, Field and Model Studies. Atmos. Chem. Phys. 2011, 11, 11069-11102.
[4] Zhong, J.; Kumar, M.; Francisco, J. S.; Zeng, X. C. Insight into Chemistry on Cloud/Aerosol Water Surfaces. Acc. Chem. Res. 2018, 51, 1229-1237.
[5] Hung, H.-M.; Hoffmann, M. R. Oxidation of Gas-phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase. Environ. Sci. Technol. 2015, 49, 13768-13776.
[6] Asmus, K. D.; Moeckel, H.; Henglein, A. Pulse Radiolytic Study of the Site of Hydroxyl Radical Attack on Aliphatic Alcohols in Aqueous Solution. J. Phys. Chem. 1973, 77, 1218-1221.
[7] Monod, A.; Chebbi, A.; Durand-Jolibois, R.; Carlier, P. Oxidation of Methanol by Hydroxyl Radicals in Aqueous Solution under Simulated Cloud Droplet Conditions. Atmos. Environ. 2000, 34, 5283-5294.
[8] Clifton, C. L.; Huie, R. E. Rate Constants for Hydrogen Abstraction Reactions of the Sulfate Radical, SO4−. Alcohols. Int. J. Chem. Kinet. 1989, 21, 677-687.
[9] Huie, R. E.; Clifton, C. L. Rate Constants for Hydrogen Abstraction Reactions of the Sulfate Radical, SO4−. Alkanes and Ethers. Int. J. Chem. Kinet. 1989, 21, 611-619.
[10] Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-radical-based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8.
[11] Ahmed, M. M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate Radical Anion Oxidation of Diclofenac and Sulfamethoxazole for Water Decontamination. Chem. Eng. J. 2012, 197, 440-447.
[12] Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environ. Sci. Technol. 2005, 39, 2383-2388.
[13] McElroy, W.; Waygood, S. Kinetics of the Reactions of the SO4− Radical with SO4−, S2O82−, H2O and Fe2+. J. Chem. Soc., Faraday Trans. 1990, 86, 2557-2564.
[14] Ivanov, K.; Glebov, E.; Plyusnin, V.; Ivanov, Y. V.; Grivin, V.; Bazhin, N. Laser Flash Photolysis of Sodium Persulfate in Aqueous Solution with Additions of Dimethylformamide. J. Photochem. Photobiol., A 2000, 133, 99-104.
[15] Yu, X.-Y.; Bao, Z.-C.; Barker, J. R. Free Radical Reactions Involving Cl•, Cl2−•, and SO4−• in the 248 nm Photolysis of Aqueous Solutions Containing S2O82− and Cl. J. Phys. Chem. A 2004, 108, 295-308.
[16] Schuchmann, H.-P.; Deeble, D. J.; Olbrich, G.; Von Sonntag, C. The SO4•−-induced Chain Reaction of 1,3-Dimethyluracil with Peroxodisulphate. In.t J. Radia. Biol. Relat. Stud. Phys. Chem. Med. 1987, 51, 441-453.
[17] Jiang, P.-Y.; Katsumura, Y.; Nagaishi, R.; Domae, M.; Ishikawa, K.; Ishigure, K.; Yoshida, Y. Pulse Radiolysis Study of Concentrated Sulfuric Acid Solutions. Formation Mechanism, Yield and Reactivity of Sulfate Radicals. J. Chem. Soc., Faraday Trans. 1992, 88, 1653-1658.
[18] Kolb, C. E.; Worsnop, D. R. Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem. 2012, 63, 471-491.
[19] Fan, W.; Chen, T.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. A Review of Secondary Organic Aerosols Formation Focusing on Organosulfates and Organic Nitrates. J. Hazard. Mater. 2022, 430, 128406.
[20] Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520-7540.
[21] McNeill, V. F. Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environ. Sci. Technol. 2015, 49, 1237-1244.
[22] Tomasi, C.; Lupi, A. Primary and Secondary Sources of Atmospheric Aerosol. In Atmospheric Aerosols, 2017; pp 1-86.
[23] Rickly, P. S.; Guo, H.; Campuzano-Jost, P.; Jimenez, J. L.; Wolfe, G. M.; Bennett, R.; Bourgeois, I.; Crounse, J. D.; Dibb, J. E.; DiGangi, J. P.; et al. Emission Factors and Evolution of SO2 Measured from Biomass Burning in Wildfires and Agricultural Fires. Atmos. Chem. Phys. 2022, 22, 15603-15620.
[24] Wallace, P. J.; Gerlach, T. M. Magmatic Vapor Source for Sulfur Dioxide Released During Volcanic Eruptions: Evidence from Mount Pinatubo. Science 1994, 265, 497-499.
[25] Ziemann, P. J.; Atkinson, R. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chem. Soc. Rev. 2012, 41, 6582-6605.
[26] Ervens, B.; Sorooshian, A.; Lim, Y. B.; Turpin, B. J. Key Parameters Controlling OH‐initiated Formation of Secondary Organic Aerosol in the Aqueous Phase (aqSOA). J. Geophys. Res.: Atmos. 2014, 119, 3997-4016.
[27] Parungo, F.; Nagamoto, C.; Maddl, R. A Study of the Mechanisms of Acid Rain Formation. J. Atmos. Sci. 1987, 44, 3162-3174.
[28] Rall, D. P. Review of the Health Effects of Sulfur Oxides. Environ. Health Perspect. 1974, 8, 97-121.
[29] Chiang, T.-Y.; Yuan, T.-H.; Shie, R.-H.; Chen, C.-F.; Chan, C.-C. Increased Incidence of Allergic Rhinitis, Bronchitis and Asthma, in Children Living near a Petrochemical Complex with SO2 Pollution. Environ. Int. 2016, 96, 1-7.
[30] Sosa Torres, M. E.; Rito Morales, A.; Solano Peralta, A.; Kroneck, P. M. H. Sulfur, the Versatile Non-metal; 2020.
[31] Kellogg, W. W.; Cadle, R. D.; Allen, E. R.; Lazrus, A. L.; Martell, E. A. The Sulfur Cycle. Science 1972, 175, 587-596.
[32] Maslin, M.; Van Heerde, L.; Day, S. Sulfur: A Potential Resource Crisis that Could Stifle Green Technology and Threaten Food Security as the World Decarbonises. Geogr. J. 2022, 188, 498-505.
[33] Brimblecombe, P. 10.14 - The Global Sulfur Cycle. In Treatise on Geochemistry (Second Edition), Holland, H. D., Turekian, K. K. Eds.; Elsevier, 2014; pp 559-591.
[34] Schulze, E.-D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M.; Schulze, E.-D.; Beck, E.; Buchmann, N.; Clemens, S. Global Biogeochemical Cycles. Plant Ecolog. 2019, 827-841.
[35] BEILKE, S.; GRAVENHORST, G. Heterogeneous SO2− Oxidation in the Droplet Phase. In Sulfur in the Atmosphere, Elsevier, 1978; pp 231-239.
[36] Möller, D. Kinetic Model of Atmospheric SO2 Oxidation Based on Published Data. Atmos. Environ. 1980, 14, 1067-1076.
[37] Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent Advances in Photo-Activated Sulfate Radical-advanced Oxidation Process (SR-AOP) for Refractory Organic Pollutants Removal in Water. Chem. Eng. J. 2019, 378, 122149.
[38] Nasseri, S.; Mahvi, A. H.; Seyedsalehi, M.; Yaghmaeian, K.; Nabizadeh, R.; Alimohammadi, M.; Safari, G. H. Degradation Kinetics of Tetracycline in Aqueous Solutions using Peroxydisulfate Activated by Ultrasound Irradiation: Effect of Radical Scavenger and Water Matrix. J. Mol. Liq. 2017, 241, 704-714.
[39] Fernandes, A.; Makoś, P.; Boczkaj, G. Treatment of Bitumen Post Oxidative Effluents by Sulfate Radicals Based Advanced Oxidation Processes (S-AOPs) under Alkaline pH Conditions. J. Cleaner Prod. 2018, 195, 374-384.
[40] Liu, L.; Gao, J.; Liu, P.; Duan, X.; Han, N.; Li, F.; Sofianos, M. V.; Wang, S.; Tan, X.; Liu, S. Novel Applications of Perovskite Oxide via Catalytic Peroxymonosulfate Advanced Oxidation in Aqueous Systems for Trace L-Cysteine Detection. J. Colloid Interface Sci. 2019, 545, 311-316.
[41] Zhao, Q.; Mao, Q.; Zhou, Y.; Wei, J.; Liu, X.; Yang, J.; Luo, L.; Zhang, J.; Chen, H.; Chen, H.; et al. Metal-free Carbon Materials-Catalyzed Sulfate Radical-Based Advanced Oxidation Processes: A Review on Heterogeneous Catalysts and Applications. Chemosphere 2017, 189, 224-238.
[42] Dogliotti, L.; Hayon, E. Flash Photolysis of Per[oxydi]Sulfate Ions in Aqueous Solutions. The Sulfate and Ozonide Radical Anions. J. Phys. Chem. 1967, 71, 2511-2516.
[43] Herrmann, H. On the Photolysis of Simple Anions and Neutral Molecules as Sources of O−/OH, SOX− and Cl in Aqueous Solution. Phys. Chem. Chem. Phys. 2007, 9, 3935-3964.
[44] Tang, Y.; Thorn, R. P.; Mauldin, R. L.; Wine, P. H. Kinetics and Spectroscopy of the SO4− Radical in Aqueous Solution. J. Photochem. Photobiol., A 1988, 44, 243-258.
[45] Buxton, G.; McGowan, S.; Salmon, G.; Williams, J.; Wood, N. A Study of the Spectra and Reactivity of Oxysulphur-radical Anions Involved in the Chain Oxidation of S(IV): A Pulse and γ-radiolysis Study. Atmos. Environ. 1996, 30, 2483-2493.
[46] Chitose, N.; Katsumura, Y.; Domae, M.; Zuo, Z.; Murakami, T. Radiolysis of Aqueous Solutions with Pulsed Helium Ion Beams—2. Yield of SO4− Formed by Scavenging Hydrated Electron as a Function of S2O82− Concentration. Radiat. Phys. Chem. 1999, 54, 385-391.
[47] Salari, D.; Niaei, A.; Aber, S.; Rasoulifard, M. H. The Photooxidative Destruction of C.I. Basic Yellow 2 using UV/S2O82− Process in a Rectangular Continuous Photoreactor. J. Hazard. Mater. 2009, 166, 61-66.
[48] Eberson, L. Electron-transfer Reactions in Organic Chemistry. In Advances in Physical Organic Chemistry, Gold, V., Bethell, D. Eds.; Vol. 18; Academic Press, 1982; pp 79-185.
[49] Lofrano, G.; Pedrazzani, R.; Libralato, G.; Carotenuto, M. Advanced Oxidation Processes for Antibiotics Removal: a Review. Curr. Org. Chem. 2017, 21, 1054-1067.
[50] Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Martinez, S. S. Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides in Aqueous Matrices: A Systematic Review and Meta-analysis. J. Environ. Prot. 2020, 134, 292-307.
[51] Nidheesh, P. V.; Couras, C.; Karim, A. V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2022, 209, 390-432.
[52] Matzek, L. W.; Carter, K. E. Activated Persulfate for Organic Chemical Degradation: A Review. Chemosphere 2016, 151, 178-188.
[53] Wojnárovits, L.; Takács, E. Rate Constants of Sulfate Radical Anion Reactions with Organic Molecules: A Review. Chemosphere 2019, 220, 1014-1032.
[54] Buxton, G.; Salmon, G.; Williams, J. The Reactivity of Biogenic Monoterpenes towards OH· and SO4−· Radicals in De-oxygenated Acidic Solution. J. Atmos. Chem. 2000, 36, 111-134.
[55] Luo, S.; Wei, Z.; Dionysiou, D. D.; Spinney, R.; Hu, W.-P.; Chai, L.; Yang, Z.; Ye, T.; Xiao, R. Mechanistic Insight into Reactivity of Sulfate Radical with Aromatic Contaminants through Single-electron Transfer Pathway. Chem. Eng. J. 2017, 327, 1056-1065.
[56] Zemel, H.; Fessenden, R. W. The Mechanism of Reaction of Sulfate Radical Anion with Some Derivatives of Benzoic Acid. J. Phys. Chem. 1978, 82, 2670-2676.
[57] Madhavan, V.; Levanon, H.; Neta, P. Decarboxylation by SO4− Radicals. Radiat. Res. 1978, 76, 15-22.
[58] Olmez-Hanci, T.; Arslan-Alaton, I. Comparison of Sulfate and Hydroxyl Radical Based Advanced Oxidation of Phenol. Chem. Eng. J. 2013, 224, 10-16.
[59] Bates, K. H.; Jacob, D. J.; Wang, S.; Hornbrook, R. S.; Apel, E. C.; Kim, M. J.; Millet, D. B.; Wells, K. C.; Chen, X.; Brewer, J. F.; et al. The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources. J. Geophys. Res.: Atmos. 2021, 126, e2020JD033439.
[60] Ashworth, K.; Chung, S. H.; McKinney, K. A.; Liu, Y.; Munger, J. W.; Martin, S. T.; Steiner, A. L. Modelling Bidirectional Fluxes of Methanol and Acetaldehyde with the FORCAsT Canopy Exchange Model. Atmos. Chem. Phys. 2016, 16, 15461-15484.
[61] Galbally, I. E.; Kirstine, W. The Production of Methanol by Flowering Plants and the Global Cycle of Methanol. J. Atmos. Chem. 2002, 43, 195-229.
[62] Heikes, B. G.; Chang, W.; Pilson, M. E. Q.; Swift, E.; Singh, H. B.; Guenther, A.; Jacob, D. J.; Field, B. D.; Fall, R.; Riemer, D.; et al. Atmospheric Methanol Budget and Ocean Implication. Global Biogeochem. Cycles 2002, 16, 80-81-80-13.
[63] Millet, D. B.; Jacob, D. J.; Custer, T. G.; de Gouw, J. A.; Goldstein, A. H.; Karl, T.; Singh, H. B.; Sive, B. C.; Talbot, R. W.; Warneke, C.; et al. New Constraints on Terrestrial and Oceanic Sources of Atmospheric Methanol. Atmos. Chem. Phys. 2008, 8, 6887-6905.
[64] Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; et al. Measurements of Reactive Trace Gases and Variable O3 Formation Rates in Some South Carolina Biomass Burning Plumes. Atmos. Chem. Phys. 2013, 13, 1141-1165.
[65] Wentworth, G. R.; Aklilu, Y.-a.; Landis, M. S.; Hsu, Y.-M. Impacts of a Large Boreal Wildfire on Ground Level Atmospheric Concentrations of PAHs, VOCs and Ozone. Atmos. Environ. 2018, 178, 19-30.
[66] Duncan, B. N.; Logan, J. A.; Bey, I.; Megretskaia, I. A.; Yantosca, R. M.; Novelli, P. C.; Jones, N. B.; Rinsland, C. P. Global Budget of CO, 1988–1997: Source Estimates and Validation with a Global Model. J. Geophys. Res.: Atmos. 2007, 112.
[67] Tie, X.; Guenther, A.; Holland, E. Biogenic Methanol and its Impacts on Tropospheric Oxidants. Geophys. Res. Lett. 2003, 30.
[68] Wells, K. C.; Millet, D. B.; Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Bousserez, N.; Apel, E. C.; de Gouw, J.; Warneke, C.; Singh, H. B. Quantifying Global Terrestrial Methanol Emissions using Observations from the TES Satellite Sensor. Atmos. Chem. Phys. 2014, 14, 2555-2570.
[69] George, C.; Rassy, H. E.; Chovelon, J. M. Reactivity of Selected Volatile Organic Compounds (VOCs) toward the Sulfate Radical (SO4−). Int. J. Chem. Kinet. 2001, 33, 539-547.
[70] Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University science books, 2006.
[71] Gomez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111, 4857-4963.
[72] Westheimer, F. The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. Chem. Rev. 1961, 61, 265-273.
[73] Chang, R.; W, T. J. J. Physical Chemistry for the Chemical Sciences; Royal Society of Chemistry, 2014.
[74] Laidler, K. J. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61, 494-498.
[75] Lee, I. Secondary Kinetic Isotope Effects Involving Deuterated Nucleophiles. Chem. Soc. Rev. 1995, 24, 223-229.

第二章 光譜技術原理、實驗系統與樣品溶液製備
[1] Halstead, J. A. Teaching the Spin Selection Rule: An Inductive Approach. J. Chem. Educ. 2013, 90, 70-75.
[2] Xie, J.; Zare, R. N. Selection Rules for the Photoionization of Diatomic Molecules. J. Chem. Phys. 1990, 93, 3033-3038.
[3] Signorell, R.; Merkt, F. General Symmetry Selection Rules for the Photoionization of Polyatomic Molecules. Mol. Phys. 1997, 92, 793-804.
[4] Mayerhöfer, T. G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029-2046.
[5] Truscott, T. G. Pulse Radiolysis and Flash Photolysis. In Photobiology: The Science and Its Applications, Riklis, E. Ed.; Springer US, 1991; pp 237-247.
[6] 黃品淳,以紫外/可見光吸收光譜法、拉曼光譜法及瞬態吸收光譜法探討甲二醇與硫酸根自由基之反應產物與動力學,國立清華大學,2023。
[7] USB4000 Fiber Optic Spectrometer: Installation and Operation Manual; 2008.
[8] Harvey, D. Modern Analytical Chemistry; McGraw-Hill, 2000.

第三章 以MATLAB軟體進行非線性動力學模擬
[1] 呂承宗,以紫外可見吸收光譜法搭配數值方法探討甲二醇與亞硝酸鹽混合水溶液之光解反應機構及反應動力學,國立清華大學,2022。
[2] Shampine, L. F.; Reichelt, M. W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18, 1-22.
[3] Cheney, E.; Kincaid, D. Numerical Mathematics and Computing; Cengage Learning, 2007.

第四章 結果與討論
[1] Clifton, C. L.; Huie, R. E. Rate Constants for Hydrogen Abstraction Reactions of the Sulfate Radical, SO4−. Alcohols. Int. J. Chem. Kinet. 1989, 21, 677-687.
[2] Mayerhöfer, T. G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029-2046.
[3] Tang, Y.; Thorn, R. P.; Mauldin, R. L.; Wine, P. H. Kinetics and Spectroscopy of the SO4− Radical in Aqueous Solution. J. Photochem. Photobiol., A 1988, 44, 243-258.
[4] Dunham, J. L. The Isotope Effect on Band Spectrum Intensities. Phys. Rev. 1930, 36, 1553-1559.
[5] Herrmann, H.; Hoffmann, D.; Schaefer, T.; Bräuer, P.; Tilgner, A. Tropospheric Aqueous-Phase Free-Radical Chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction Tools. ChemPhysChem 2010, 11, 3796-3822.
[6] Buxton, G.; McGowan, S.; Salmon, G.; Williams, J.; Wood, N. A Study of the Spectra and Reactivity of Oxysulphur-radical Anions Involved in the Chain Oxidation of S(IV): A Pulse and γ-radiolysis Study. Atmos. Environ. 1996, 30, 2483-2493.
[7] McElroy, W.; Waygood, S. Kinetics of the Reactions of the SO4− Radical with SO4−, S2O82−, H2O and Fe2+. J. Chem. Soc., Faraday Trans. 1990, 86, 2557-2564.
[8] Ivanov, K.; Glebov, E.; Plyusnin, V.; Ivanov, Y. V.; Grivin, V.; Bazhin, N. Laser Flash Photolysis of Sodium Persulfate in Aqueous Solution with Additions of Dimethylformamide. J. Photochem. Photobiol., A 2000, 133, 99-104.
[9] Yu, X.-Y.; Bao, Z.-C.; Barker, J. R. Free Radical Reactions Involving Cl•, Cl2−•, and SO4−• in the 248 nm Photolysis of Aqueous Solutions Containing S2O82− and Cl. J. Phys. Chem. A 2004, 108, 295-308.
[10] Schuchmann, H.-P.; Deeble, D. J.; Olbrich, G.; Von Sonntag, C. The SO4•−-induced Chain Reaction of 1,3-Dimethyluracil with Peroxodisulphate. In.t J. Radia. Biol. Relat. Stud. Phys. Chem. Med. 1987, 51, 441-453.
[11] Jiang, P.-Y.; Katsumura, Y.; Nagaishi, R.; Domae, M.; Ishikawa, K.; Ishigure, K.; Yoshida, Y. Pulse Radiolysis Study of Concentrated Sulfuric Acid Solutions. Formation Mechanism, Yield and Reactivity of Sulfate Radicals. J. Chem. Soc., Faraday Trans. 1992, 88, 1653-1658.
[12] Herrmann, H. On the Photolysis of Simple Anions and Neutral Molecules as Sources of O−/OH, SOX− and Cl in Aqueous Solution. Phys. Chem. Chem. Phys. 2007, 9, 3935-3964.
[13] Anbar, M.; Meyerstein, D.; Neta, P. Reactivity of Aliphatic Compounds towards Hydroxyl Radicals. J. Chem. Soc. B 1966, 742-747.
[14] Chitose, N.; Katsumura, Y.; Domae, M.; Zuo, Z.; Murakami, T. Radiolysis of Aqueous Solutions with Pulsed Helium Ion Beams—2. Yield of SO4− Formed by Scavenging Hydrated Electron as a Function of S2O82− Concentration. Radiat. Phys. Chem. 1999, 54, 385-391.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以紫外/可見光吸收光譜法、拉曼光譜法及瞬態吸收光譜法探討甲二醇與硫酸根自由基之反應產物及動力學
2. 甲醇在固體酸(鹼)觸媒上之反應機耩及動力學模式之研究
3. 由合成氣製造甲醇之動力學研究
4. 在銅- 鋅觸媒上以甲醇製造氫氣之動力學研究
5. 在銅- 鋅觸媒上以甲醇製造氫氣之動力學研究
6. 以時間解析紅外吸收光譜法研究甲醇和甲二醇於光解亞硝酸根水溶液中之反應性比較
7. 界面活性劑對紫膜及細菌視紫質結構的影響
8. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
9. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
10. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
11. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
12. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
13. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
14. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
15. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
 
* *