帳號:guest(3.137.200.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳而庭
作者(外文):Wu, Er-Ting
論文名稱(中文):以4-硝基苯乙炔修飾的氧化亞銅多面體進行光催化氧化伯胺耦聯反應
論文名稱(外文):Photocatalytic Oxidative Amine Coupling With 4‐Nitrophenylacetylene-Modified Cu2O Polyhedra
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):鄭彥如
莊士卿
口試委員(外文):Cheng, Yen-Ju
Chuang, Shih-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:111023503
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:71
中文關鍵詞:晶面效應氧化亞銅光催化4-硝基苯乙炔伯胺耦聯
外文關鍵詞:facet effectCu2Ophotocatalyst4‐NitrophenylacetyleneAmineCoupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
近年來,由於對環保意識的增強,綠色化學引起了相當大的關注,本研究使用以4-硝基苯乙炔修飾的氧化亞銅菱形十二面體做為光催化劑,乙腈作為溶劑,在藍光照射下以及氧氣環境中催化伯胺耦聯反應。4-硝苯乙炔修飾的氧化亞銅催化十二種不同芳香取代基起始物皆能達到高產率以及高選擇性,同時相較於傳統的COF、MOF材料和貴金屬錯合物催化劑,更具有成本效益和製程簡單的優勢。
一系列的活性物質捕捉實驗以及EPR實驗指出當光照到催化劑時,會產生激發態電子、電洞和超氧自由基,這些反應中間體的生成與催化反應的進行密切相關,並藉此提出可能的反應機制。
In recent years, due to the heightened awareness of environmental conservation, green chemistry has garnered significant attention. In this study, copper oxide rhombic dodecahedra modified with 4-nitrophenylacetylene was employed as a catalyst for the coupling reaction of benzylamine in acetonitrile conducted under blue light irradiation in an oxygen atmosphere. High product yields and selectivity were achieved using twelve different aromatic substituents. A series of reactive species trapping experiments and electron paramagnetic resonance experiments indicate the generation of excited state electrons, holes, and superoxide radicals upon light irradiation of the photocatalyst. The reaction mechanisms are proposed from these results. This photocatalyst is simple and cheap to make, compared to metal-organic frameworks and covalent organic frameworks often used for this reaction.
論文摘要…………………………………………………………………………………………………………………..I
Abstract………………………………………………………………………………………………………………..….II
誌謝…………………………………………………………………………………………………………….………...III
List of Schemes…………………………………………………………...……………………………………….VI
List of Figures…………………………………………………………………………………………………...…VII
List of Tables………………………………………………..……………………….……….…………………….IX
List of Spectrum……………………………………………………………………………………………………..X
1. Introduction…………………………………………………………………………………………………………1
1.1 Cu2O properties and facet effect……………………………………………………………………...1
1.2 Functionalized Cu2O crystals………………………………...………………………………...……6
1.3 Cu2O crystals for photocatalysis………………………………………………………..…………….9
1.4 Imines and their synthesis…………………………………………………………………………….10
2. Motivation…………………………………………………………………………………………………………..18 3. Experimental Section………………………………………………………………………………………....19
3.1 Chemicals……………………………………………………………………………………………………..19
3.2 Instrumentation……………………………………………………………………………………………..20
3.3 Synthesis of polyhedral Cu2O crystals………………………………………………………….20
3.4 Functionalization of Cu2O crystals with 4-nitrophenylacetylene…………………..22
3.5 Cu2O-catalyzed amine coupling reaction……………………………………………………….23
3.6 Radical scavenging experiment……………………………….……………………………………..24
3.7 Electron paramagnetic resonance (EPR) experiment……………………………………..25
4. Result and discussion…………………………………………………………………………………….…...27
4.1 Analysis of Cu2O crystals……………………………………………………………………………...27
4.2 Photocatalytic oxidative amine coupling…………………………………….....................33
4.3 Mechanism studies………………………………………………………………………………………..43
5. Conclusion……………………………………………………………………………………………………….…49
6. Reference………………………………………………………………………………..………………………….54
1. Siddiqui, M. K.; Manzoor, S.; Ahmad, S.; Kaabar, M. K. A. On Computation and
Analysis of Entropy Measures for Crystal Structures. Math. Probl. Eng. 2021, 9936949.
2. Sun, S.-D.; Zhang, X.-J.; Yang, Q.; Liang, S.-H.; Zhang, X.-Z.; Yang, Z.-M. Cuprous Oxide (Cu2O) Crystals with Tailored Architectures: A Comprehensive Review on Synthesis, Fundamental Properties, Functional Modifications and Applications. Prog. Mater Sci. 2018, 96, 111−173.
3. Su, Z.-H.; Hsieh, M.-H.; Chen, Z.-L.; Dai, W.-T.; Wu, E.-T.; Huang, M. H. Aqueous Phase Photocatalytic Hydroxylation of Aryl Boronic Acids Using Polyhedral Cu2O Crystals. Chem. Mater. 2023, 35, 2782−2789.
4. Wan, X.; Wang, J.; Zhu, L.; Tang, J. Gas Sensing Properties of Cu2O and Its Particle Size and Morphology-dependent Gas-Detection Sensitivity. J. Mater. Chem. A 2014, 2, 13641−13647.
5. Wei, H. M.; Gong, H. B.; Chen, L.; Zi, M.; Cao, B. Q. Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure. J. Phys. Chem. C 2012, 116, 10510−10515.
6. Chen, K.; Sun, C.; Xue, D. Morphology Engineering of High Performance Binary Oxide Electrodes. Phys. Chem. Chem. Phys. 2015, 17, 732−750.
7. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116−15123.
8. Chen, B.-H.; Kumar, G.; Wei, Y.-J.; Ma, H.-H.; Kao, J.-C.; Chou, P.-J.; Chuang, Y.-C.; Chen, I.-C.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Experimental Revelation of Surface and Bulk Lattices in Faceted Cu2O Crystals. Small 2023, 19, 2303491.
9. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed Through the Examination of Photocatalytic Activities of Various Cu2O-ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
10. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582−358.
11. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-deposited Cu2O Octahedral and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314−2320.
12. Huang, M. H.; Madasu, M. Nano Today 2019, 28, 100768.
13. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylaniline Resulting From Band Structure Tuning. ACS Cent. Sci. 2020, 6, 984−994.
14. Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. 4-Nitrophenylacetylene-Modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C 2022, 10, 8422−8431.
15. Chou, P.-J.; Yu, W.-Y.; Kao, J.-C.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. Photocatalytic Activity Enhancement with 4-Cyanophenyl Acetylene-Modified Cu2O Cubes and Rhombic Dodecahedra and Use in Aryl Boronic Acid Hydroxylation. J. Mater. Chem. A 2023, 11, 19514−19523.
16. Hsieh, M.-H.; Su, Z.-H.; Wu, E.-T.; Huang, M. H. Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene- Modified Cu2O Crystals. ACS Appl. Mater. Interfaces 2023, 15, 11662−11669.
17. Damaceanu, M.-D.; Constantin, C.-P.; Marin, L. Insights Into the Effect of Donor-Acceptor Strength Modulation on Physical Properties of Phenoxazine-Based Imine Dyes. Dyes Pigm. 2016, 134, 382−396.
18. Kumar, J.; Rai, A.; Raj, V. A Comprehensive Review on the Pharmacological Activity of Schiff Base Containing Derivatives. Org. Med. Chem. 2017, 1, 555564.
19. Arulmurugan, S.; Kavitha, H. P.; Venkatraman, B. R. Biological Activities of Schiff Base and its Complexes: A Review. Rasayan J. Chem. 2010, 3, 385−410.
20. Altamimi, M. A.; Hussain, A.; Alshehri, S.; Imam, S. S.; Alnami, A.; Bari, A. Novel Hemocompatible Imine Compounds as Alternatives for Antimicrobial Therapy in Pharmaceutical Application. Processes 2020, 8, 1476.
21. Liu, L; Wang, Z.; Fu, X.; Yan, C.-H. Azobisisobutyronitrile Initiated Aerobic Oxidative Transformation of Amines: Coupling of Pimary Amines and Cyanation of Tertiary Amines. Org. Lett. 2012, 14, 5692−5695.
22. Zhao, S.; Liu, C.; Guo, Y.; Xiao, J.-C.; Chen, Q.-Y. Oxidative Coupling of Benzylamines to Imines by Molecular Oxygen Catalyzed by Cobalt (II) β‐Tetrakis(trifluoromethyl)-meso-tetraphenylporphyrin. J. Org. Chem. 2014, 79, 8926−8931.
23. Prades, A.; Peris, E.; Albrecht, M. Oxidations and Oxidative Couplings Catalyzed by Triazolylidene Ruthenium Complexes. Organometallics 2011, 30, 1162−1167.
24. Li, Q.; Wang, J.; Zhang, Y.; Ricardez-Sandoval, L.; Bai, G.; Lan, X. Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Appl. Mater. Interfaces 2021, 13, 39291−3930.
25. Ge, B.; Ye, Y.; Yan, Y.; Luo, H.; Chen, Y.; Meng, X.; Song, X.; Liang, Z. Thiazolo[5,4-d]thiazole-Based Metal−Organic Framework for Catalytic CO2 Cycloaddition and Photocatalytic Benzylamine Coupling Reactions. Inorg. Chem. 2023, 62, 19288−19297.
26. Chen, Z.-L.; Huang, M. H. Photocatalytic Oxidative Amine Coupling Using Polyhedral SrTiO3 crystals. J. Mater. Chem. A 2023, 11, 22198.
27. Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4-Disubstituted Triazole through the Click Reaction. Chem. Eur. J. 2014, 20, 15991−15997.
28. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au‒Cu Core‒Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles. Nanoscale 2017, 9, 6970−6974.
29. Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully Conjugated Donor-Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catal. 2020, 10, 8717−8726.
30. Li, M.-H.; Yang, Z.; Li, Z.; Wu, J.-R.; Yang, B.; Yang, Y.-W. Construction of Hydrazone-Linked Macrocycle-Enriched Covalent Organic Frameworks for Highly Efficient Photocatalysis. Chem. Mater. 2022, 34, 5726−5739.
31. Xu, C.; Chen, Y.; Xie, X.; Yan, K.; Si, Y.; Zhang, M.; Yan, Q. Construction of Ag SPR-Promoted Z-Scheme Ag2MoO4/CuBi2O4 Composites with Enhanced Photocatalytic Performance. J. Mater. Sci. Mater. Electron. 2020, 31, 8151−8164.
32. Zhao, F.-J.; Zhang, G.; Ju, Z.; Tan, Y.-X.; Yuan, D. The Combination of Charge and Energy Transfer Processes in MOFs for Efficient Photocatalytic Oxidative Coupling of Amines. Inorg. Chem. 2020, 59, 3297−3303
33. Liu, Y.; Jiang, X.; Chen, L.; Cui, Y.; Li, Q.-Y.; Zhao, X.-S.; Han, X. G.; Zheng, Y.-C.; Wang, X.-J. Rational Design of a Phenothiazine-based Donor-acceptor Covalent Organic Framework for Enhanced Photocatalytic Oxidative Coupling of Amines and Cyclization of Thioamides. J. Mater. Chem. A 2023, 11, 1208−1215.
34. Juntrapirom, S.; Tantraviwat, D.; Thongsook, O.; Anuchai, S.; Pornsuwan, S.; Channei, D.; Inceesungvorn, B. Natural Sunlight Driven Photocatalytic Coupling of Primary Amines Over TiO2/BiOBr. Appl. Surf. Sci. 2021, 545, 149015.
35. Bai, P.; Tong, X. L.; Gao, Y. Q.; Guo, P. F. Oxygen-Free Water-Promoted Selective Photocatalytic Oxidative Coupling of Amines. Catal. Sci. Technol. 2019, 9, 5803−5811.
36. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Facet-Dependent Organocatalytic Activities of Au and Cu2O Nanocrystals and Facet-Dependent Optical Properties of Pd-Cu2O Core-Shell Nanocrystals
2. 合成金修飾的氧化亞銅探討高度晶面相關的光催化性質
3. 氧化亞銅奈米晶體其具晶面效應的導電性質及金-氧化亞銅、金@銀-氧化亞銅核殼奈米晶體其具晶面效應的光學性質
4. 氧化亞銅奈米粒子之光學性質與能帶結構探討與氧化亞銅與硫化鎘之異質介面所造成的光催化活性的抑制
5. 利用電子、電洞和自由基捕捉劑探討氧化亞銅晶體於光催化的晶面效應
6. 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
7. 多面體氧化亞銅奈米晶體光催化芳基硼酸分子羥基化反應
8. 4-硝基苯乙炔修飾之氧化亞銅奈米粒子在水相進行光催化芳基硫醚氧化反應
9. 於氧化亞銅立方體表面修飾含腈基或鹵素的乙炔基苯分子以增強其光催化活性
10. 氧化亞銅奈米晶體之晶面對電化學催化氧氣還原反應的影響
11. 利用氧化亞銅粒子進行光催化硫醇氧化反應
12. 利用SrTiO3奈米晶體光催化氧化伯胺分子的耦合反應
13. 鈣鈦礦立方體和長方體的合成及其光催化性能的研究
14. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性 二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
15. 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
 
* *