帳號:guest(3.12.136.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈奕廷
作者(外文):Shen, Yi-Ting
論文名稱(中文):一個簡單而全面的單一心臟細胞動力學模型
論文名稱(外文):A Simple Yet Comprehensive Dynamical Model for a Single Cardiac Cell
指導教授(中文):吳國安
指導教授(外文):Wu, Kuo-An
口試委員(中文):陳宣毅
黎璧賢
羅主斌
口試委員(外文):Chen, Hsuan-Yi
Lai, Pik-Yin
Lo, Chu-Pin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:111022526
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:64
中文關鍵詞:心肌細胞非線性動力學軟物質鈣離子調節蘭諾定受體不穩定之雙週期現象
外文關鍵詞:Cardiac cellNonlinear dynamicsSoft matterCalcium regulationRyanodine receptorPeriod-doubling instability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
研究表明心室顫動(VF)與單顆心臟細胞的不規律心跳之間存在聯繫。雖然生理離子模型能夠重現觀察到的不規則刺激(雙週期現象),但其複雜性源於動作電位和細胞內鈣離子循環通過L型鈣通道等敏感通道的耦合。通過合理的近似和觀察例如動作電位和細胞內鈣離子循環。該4變量動力學系統僅涉及鈣離子循環,我們提出了一個簡化的4變量模型,其成功捕捉到了離子模型中的雙週期現象以及一致/不一致交替。值得注意的是,我們的模型強調了細胞內鈣離子循環在心臟動力學中的關鍵作用。鈣離子儲存器(SR)和細胞質中的鈣濃度對鈣誘導的鈣釋放(CICR)現象產生影響,導致攝取電流與釋放電流之間的競爭,從而引發交替現象。此外,L型鈣通道中的鈣依賴性失活門是決定一致或不一致交替的主要因素。此外,4變量模型和離子模型均清楚地顯示了鈣離子循環對動作電位持續時間(APD)的影響。通過這簡化模型,我們對複雜的心臟系統獲得了有價值的看法。
Studies have indicated that ventricular fibrillation (VF), a severe heart condition, could be associated with irregular and incoherent beats of a single cardiac cell. A physiological ionic model that accounts for the intricate interplay of organelles in a single cardiac cell can reproduce the observed irregular pacing such as the period-2 cycle. Despite the success of the ionic model, we still search for a simplified model that can be used to explain the underlying mechanics. Therefore, we propose a reduced 4-variable model that is derived from the ionic model. This 4-variable model is based on numerical observations and approximations of the ionic model, and it is significantly simpler to analyze and understand. The 4-variable dynamical system successfully captures the bifurcation behavior, period-2 cycle, and concordant/discordant alternans consistent with the ionic model. Notably, our model highlights the critical role of intracellular calcium cycling in cardiac dynamics. Specifically, the calcium concentrations in the sarcoplasmic reticulum (SR) and cytosol exert the influence on the calcium-induced calcium-release (CICR) phenomenon, which gives rise to the competition between the uptake current and release current, leading to the alternans. Moreover, we show that the calcium-dependent inactivation gate in the L-type calcium channel emerges as a dominant factor determining concordant or discordant alternans. Additionally, both the 4-variable and ionic models reveal the clear influence of calcium cycling on action potential duration (APD). We gain valuable insights into the cardiac mechanism through this approach.
Contents ii
List of Tables iii
List of Figures viii
1 Introduction 1
2 Review of the Ionic Model 4
2.1 Membrane potential and ion channels . . . . . . . . . . . . . . . . . 4
2.2 Calcium cycling inside the cell . . . . . . . . . . . . . . . . . . . . . 6
2.3 Ionic model structure . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Approximation Methods for the 4-Variable Model 15
3.1 L-type calcium current ICa . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Sodium-calcium exchanger (NCX) current IN aCa . . . . . . . . . . . 20
3.3 Calcium concentration in submembrane space cs . . . . . . . . . . . 22
3.4 Cytosolic calcium buffering . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Calcium concentration in the NSR cj . . . . . . . . . . . . . . . . . 24
3.6 4-variable model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Membrane Potential V and Sodium Current IN a . . . . . . . . . . . 27
4 Result 29
4.1 Period-2 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Concordant and Discordant alternans . . . . . . . . . . . . . . . . . 32
4.2.1 γ and Concordant/Discordant alternans . . . . . . . . . . . 32
4.2.2 τf -u Phase Diagram and Concordant/Discordant alternans . 37
5 Conclusion and Future Work 45
Appendix 47
A. Details of the Ionic Model . . . . . . . . . . . . . . . . . . . . . . . . 48
B. Details of the 4-Variable Model . . . . . . . . . . . . . . . . . . . . . 52
C. Physiological Parameters of a Cardiac Cell . . . . . . . . . . . . . . . 55
Reference 58
[1] Alain Karma and Robert F Gilmour Jr. Nonlinear dynamics of heart rhythm disorders. Physics Today, 60(3):51–57, 2007.
[2] Hideki Hayashi, Yohannes Shiferaw, Daisuke Sato, Motoki Nihei, Shien-Fong Lin, Peng-Sheng Chen, Alan Garfinkel, James N Weiss, and Zhilin Qu. Dynamic origin of spatially discordant alternans in cardiac tissue. Biophysical Journal, 92(2):448–460, 2007.
[3] Blas Echebarria and Alain Karma. Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Physical Review Letters, 88(20):208101, 2002.
[4] Mary E D ́ıaz, Stephen C O’neill, and David A Eisner. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circulation Research, 94(5):650–656, 2004.
[5] E Chudin, J Goldhaber, A Garfinkel, J Weiss, and B Kogan. Intracellular ca2+ dynamics and the stability of ventricular tachycardia. Biophysical Journal, 77(6):2930–2941, 1999.
[6] Alan Garfinkel, Young-Hoon Kim, Olga Voroshilovsky, Zhilin Qu, Jong R Kil, Moon-Hyoung Lee, Hrayr S Karagueuzian, James N Weiss, and Peng-Sheng Chen. Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11):6061–6066, 2000.
[7] Alain Karma. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science, 4(3):461–472, 1994.
[8] Daisuke Sato and Colleen E Clancy. Cardiac electrophysiological dynamics from the cellular level to the organ level. Biomedical Engineering and Computational Biology, 5:BECB–S10960, 2013.
[9] Ching-Hsing Luo and Yoram Rudy. A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circulation Research, 68(6):1501–1526, 1991.
[10] Ching-Hsing Luo and Yoram Rudy. A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes. Circulation Research, 74(6):1071–1096, 1994.
[11] Ching-Hsing Luo and Yoram Rudy. A dynamic model of the cardiac ventricular action potential. ii. afterdepolarizations, triggered activity, and potentiation. Circulation Research, 74(6):1097–1113, 1994.
[12] Yohannes Shiferaw, Daisuke Sato, and Alain Karma. Coupled dynamics of voltage and calcium in paced cardiac cells. Physical Review E, 71(2):021903, 2005.
[13] Y Shiferaw, MA Watanabe, A Garfinkel, JN Weiss, and A Karma. Model of intracellular calcium cycling in ventricular myocytes. Biophysical Journal, 85(6):3666–3686, 2003.
[14] Yohannes Shiferaw and Alain Karma. Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proceedings of the National Academy of Sciences, 103(15):5670–5675, 2006.
[15] Jeffrey J Fox, Jennifer L McHarg, and Robert F Gilmour Jr. Ionic mechanism of electrical alternans. American Journal of Physiology Heart and Circulatory Physiology, 282(2):H516–H530, 2002.
[16] Matthew Kennedy, Donald M Bers, Nipavan Chiamvimonvat, and Daisuke Sato. Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans. The Journal of Physiology, 595(7):2285–2297, 2017.
[17] Daisuke Sato, Rose E Dixon, Luis F Santana, and Manuel F Navedo. A model for cooperative gating of l-type ca2+ channels and its effects on cardiac alternans dynamics. PLoS Computational Biology, 14(1):e1005906, 2018.
[18] Po-Cheng Chang, Yu-Cheng Hsieh, Chia-Hsiang Hsueh, James N Weiss,
Shien-Fong Lin, and Peng-Sheng Chen. Apamin induces early afterdepo-
larizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm, 10(10):1516–1524, 2013.
[19] Po-Cheng Chang and Peng-Sheng Chen. Sk channels and ventricular arrhythmias in heart failure. Trends in Cardiovascular Medicine, 25(6):508–514, 2015.
[20] Xiao-Dong Zhang, Deborah K Lieu, and Nipavan Chiamvimonvat. Small-conductance ca2+-activated k+ channels and cardiac arrhythmias. Heart Rhythm, 12(8):1845–1851, 2015.
[21] Dipika Tuteja, Danyan Xu, Valeriy Timofeyev, Ling Lu, Dipika Sharma, Zhao Zhang, Yanfang Xu, Liping Nie, Ana E V ́azquez, J Nilas Young, Kathryn A Glatter, and Nipavan Chiamvimonva. Differential expression of small-conductance ca2+-activated k+ channels sk1, sk2, and sk3 in mouse atrial and ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 289(6):H2714–H2723, 2005.
[22] Chih-Chieh Yu, Christopher Corr, Changyu Shen, Richard Shelton, Mrinal Yadava, Isaac B Rhea, Susan Straka, Michael C Fishbein, Zhenhui Chen, Shien-Fong Lin, John C Lopshire, and Peng Sheng Chen. Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles. Circulation: Arrhythmia and Electrophysiology, 8(3):667–676, 2015.
[23] Yanfang Xu, Pei Hong Dong, Zhao Zhang, Gias Uddin Ahmmed, and Nipavan Chiamvimonvat. Presence of a calcium-activated chloride current in mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 283(1):H302–H314, 2002.
[24] Ning Li, Valeriy Timofeyev, Dipika Tuteja, Danyan Xu, Ling Lu, Qian Zhang, Zhao Zhang, Anil Singapuri, Trevine R Albert, Amutha V Rajagopal, Chris T Bond, Muthu Periasamy, John Adelman, and Nipavan Chiamvimonvat. Ablation of a ca2+-activated k+ channel (sk2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. The Journal of Physiology, 587(5):1087–1100, 2009.
[25] Chia-Hsiang Hsueh, Po-Cheng Chang, Yu-Cheng Hsieh, Thomas Reher,
Peng-Sheng Chen, and Shien-Fong Lin. Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm, 10(6):891–898, 2013.
[26] Qian Zhang, Valeriy Timofeyev, Ling Lu, Ning Li, Anil Singapuri, Melissa K Long, Chris T Bond, John P Adelman, and Nipavan Chiamvimonvat. Functional roles of a ca2+-activated k+ channel in atrioventricular nodes. Circulation Research, 102(4):465–471, 2008.
[27] Lianguo Wang, Rachel C Myles, Nicole M De Jesus, Alex KP Ohlendorf, Donald M Bers, and Crystal M Ripplinger. Optical mapping of sarcoplasmic reticulum ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. Circulation Research, 114(9):1410–1421, 2014.
[28] Willemijn Groenendaal, Francis A Ortega, Trine Krogh-Madsen, and David J Christini. Voltage and calcium dynamics both underlie cellular alternans in cardiac myocytes. Biophysical Journal, 106(10):2222–2232, 2014.
[29] JB Nolasco and Roger W Dahlen. A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology, 25(2):191–196, 1968.
[30] Dante R Chialvo, Robert F Gilmour Jr, and Jose Jalife. Low dimensional chaos in cardiac tissue. Nature, 343(6259):653–657, 1990.
[31] G Martin Hall, Sonya Bahar, and Daniel J Gauthier. Prevalence of ratedependent behaviors in cardiac muscle. Physical Review Letters, 82(14):2995, 1999.
[32] SG Dilly and MJ Lab. Electrophysiological alternans and restitution during acute regional ischaemia in myocardium of anaesthetized pig. The Journal of Physiology, 402(1):315–333, 1988.
[33] Jeffrey J Fox, Eberhard Bodenschatz, and Robert F Gilmour Jr. Period-doubling instability and memory in cardiac tissue. Physical Review Letters, 89(13):138101, 2002.
[34] Julian Landaw, Alan Garfinkel, James N Weiss, and Zhilin Qu. Memory-induced chaos in cardiac excitation. Physical Review Letters, 118(13):138101, 2017.
[35] Julian Landaw and Zhilin Qu. Memory-induced nonlinear dynamics of excitation in cardiac diseases. Physical Review E, 97(4):042414, 2018.
[36] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.
[37] Tsu-Juey WU, Masaaki Yashima, Rahul Doshi, YOUNG-HOON KIM,
Charles A Athill, James JC Ong, Lawrence Czer, Alfredo Trento, Carlos
Blanche, Robert M Kass, Alan Garfinkel, James N Weiss, Michael C Fish-
bein, Hrayr S Karaguezian, and Peng-Sheng Chen. Relation between cellular repolarization characteristics and critical mass for human ventricular fibrillation. Journal of Cardiovascular Electrophysiology, 10(8):1077–1086, 1999.
[38] S. J. Wu. Nonlinear dynamics of calcium cycling in a cardiac cell. National Tsing Hua University, Master thesis, 2021.
[39] Christopher R Weber, Valentino Piacentino III, Kenneth S Ginsburg, Steven R Houser, and Donald M Bers. Na+-ca2+ exchange current and submembrane [ca2+] during the cardiac action potential. Circulation Research, 90(2):182–189, 2002.
[40] JW Bassani, WEILONG Yuan, and Donald M Bers. Fractional sr ca release is regulated by trigger ca and sr ca content in cardiac myocytes. American Journal of Physiology-Cell Physiology, 268(5):C1313–C1319, 1995.
[41] Thomas R Shannon, Kenneth S Ginsburg, and Donald M Bers. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophysical Journal, 78(1):334–343, 2000.
[42] Alexandre Fabiato. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Journal of Molecular and Cellular Cardiology, 24:28, 1992.
[43] James N Weiss, Alain Karma, Yohannes Shiferaw, Peng-Sheng Chen, Alan Garfinkel, and Zhilin Qu. From pulsus to pulseless: the saga of cardiac alternans. Circulation Research, 98(10):1244–1253, 2006.
[44] Ilija Uzelac, Yanyan C Ji, Daniel Hornung, Johannes Schr ̈oder-Scheteling, Stefan Luther, Richard A Gray, Elizabeth M Cherry, and Flavio H Fenton. Simultaneous quantification of spatially discordant alternans in voltage and intracellular calcium in langendorff-perfused rabbit hearts and inconsistencies with models of cardiac action potentials and ca transients. Frontiers in Physiology, 8:819, 2017.
[45] Thomas R Shannon, Kenneth S Ginsburg, and Donald M Bers. Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophysical Journal, 78(1):322–333, 2000.
[46] Mariah L Walker and David S Rosenbaum. Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. Cardiovascular Research, 57(3):599–614, 2003.
[47] Bum-Rak Choi and Guy Salama. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. The Journal of Physiology, 529(Pt 1):171, 2000.
[48] David G Schaeffer, John W Cain, Daniel J Gauthier, Soma S Kalb, Robert A Oliver, Elena G Tolkacheva, Wenjun Ying, and Wanda Krassowska. An ionically based mapping model with memory for cardiac restitution. Bulletin of Mathematical Biology, 69(2):459, 2007.
[49] Joseph M Pastore, Steven D Girouard, Kenneth R Laurita, Fadi G Akar, and David S Rosenbaum. Mechanism linking t-wave alternans to the genesis of cardiac fibrillation. Circulation, 99(10):1385–1394, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *