帳號:guest(3.141.41.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周冠諺
作者(外文):Chou, Kuan-Yen
論文名稱(中文):從快速電波爆發的透鏡效應對軸子延伸結構的約束
論文名稱(外文):Constraints on Extended Axion Structures from Lensing Effects of Fast Radio Burst
指導教授(中文):曾柏彥
指導教授(外文):Tseng, Po-Yen
口試委員(中文):張敬民
陳傳仁
段必輝
口試委員(外文):Cheung, Kingman
Chen, Chuan-Ren
Tuan, Pi-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:111022523
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:60
中文關鍵詞:暗物質軸子星軸子-光子耦合效應引力透鏡效應快速電波爆發
外文關鍵詞:Dark matterAxion starAxion-photon coupling effectGravitational lensing effectFast radio burst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軸子是一種假想的贗標量粒子,最初提出的動機是為了解決強作用力的CP問題,而現在已被視為具有前途的暗物質候選者。QCD軸子和類軸子粒子都有可能通過引力互相吸引和自身的相互作用在早期宇宙中形成一種稱作軸子星的緊緻天體。在這項研究中,我們研究由軸子星的引力和軸子-光子耦合效應所引起的銀河系外快速電波爆發的透鏡現象,而後者的效應在過去的文獻中尚未被考慮。我們計算被位於銀河系外和銀河系中的軸子星透鏡化的快速電波爆發的光學深度。根據尚未觀察到被透鏡化的快速電波爆發信號,我們對軸子的參數如質量、衰變常數、軸子-光子耦合常數與軸子對暗物質比例進行了約束。
Axions are hypothetical pseudoscalar particles that were originally proposed to resolve the strong $CP$ problem and have been viewed as promising dark matter candidates. Both QCD axions and axion-like particles have the potential to form an astrophysical compact star called axion star through gravitational attraction and self-interaction in the early universe. In this work, we study the lensing of fast radio bursts (FRBs) induced by gravity and axion-photon coupling effects from the axion stars, while the latter effect hasn't been considered in the past literature. We calculate the integrated optical depth of FRB being lensed by axion stars located in both extragalactic space and the Milky Way. From the null observational result of the lensed FRB signal, we have placed the constraints on axion parameters, such as mass, decay constant, axion-photon coupling constant, and its fraction to dark matter abundance.
Contents I
List of Tables III
List of Figures IV
1 Introduction 1
1.1 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Fast Radio Burst . . . . . . . . . . . . . . . . . . . . . . 12
2 Gravitational Lensing 18
2.1 Point-Like Lens . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Finite-Lens Size Effect . . . . . . . . . . . . . . . . . . . 24
2.3 Finite-Source Size Effect . . . . . . . . . . . . . . . . . . 27
3 Axion-Photon Coupling-Induced Bending Angle, Magnification and
Time Delay 30
4 Fast Radio Burst Lensing 34
5 Results 38
5.1 Case: QCD Axion . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Case: ALP . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Conclusion 49
Bibliography 51
[1] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J., 86:217, 1937.
[2] Gianfranco Bertone and Dan Hooper. History of dark matter. Rev. Mod. Phys., 90(4):045002, 2018, arXiv:1605.04909 [astro-ph.CO].
[3] Bing-Lin Young. A survey of dark matter and related topics in cosmology. Front. Phys. (Beijing), 12(2):121201, 2017.
[4] Dan Hooper. TASI Lectures on Indirect Searches For Dark Matter. PoS, TASI2018:010, 2019, arXiv:1812.02029 [hep-ph].
[5] Tongyan Lin. Dark matter models and direct detection. PoS, 333:009, 2019, arXiv:1904.07915 [hep-ph].
[6] V. A. Rubakov. Cosmology and dark matter. CERN Yellow Rep. School
Proc., 5:129, 2022, arXiv:1912.04727 [hep-ph].
[7] Benjamin R. Safdi. TASI Lectures on the Particle Physics and Astrophysics of Dark Matter. PoS, TASI2022:009, 2024, arXiv:2303.02169 [hep-ph].
[8] V. C. Rubin, Jr. Ford, W. K., and N. Thonnard. Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa → Sc. Astrophys. J, 225:L107–L111, 1978.
[9] Douglas Clowe, Marusa Bradac, Anthony H. Gonzalez, Maxim Markevitch, Scott W. Randall, Christine Jones, and Dennis Zaritsky. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett., 648:L109–L113, 2006, astro-ph/0608407.
[10] Teresa Marrodán Undagoitia and Ludwig Rauch. Dark matter direct-
detection experiments. J. Phys. G, 43(1):013001, 2016, arXiv:1509.08767 [physics.ins-det].
[11] Tracy R. Slatyer. Indirect Detection of Dark Matter. In Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics, pages 297–353, 2018, arXiv:1710.05137 [hep-ph].
[12] Antonio Boveia and Caterina Doglioni. Dark Matter Searches at Colliders. Ann. Rev. Nucl. Part. Sci., 68:429–459, 2018, arXiv:1810.12238 [hep-ex].
[13] E. Aprile et al. First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment. Phys. Rev. Lett., 131(4):041003, 2023,
arXiv:2303.14729 [hep-ex].
[14] P. Agnes et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. Phys. Rev. D, 107(6):063001, 2023, arXiv:2207.11966 [hep-ex].
[15] M. Ackermann et al. The Fermi Galactic Center GeV Excess and Implications for Dark Matter. Astrophys. J., 840(1):43, 2017, arXiv:1704.03910 [astro-ph.HE].
[16] M. G. Aartsen et al. IceCube-Gen2: the window to the extreme Universe. J. Phys. G, 48(6):060501, 2021, arXiv:2008.04323 [astro-ph.HE].
[17] Jihn E. Kim and Gianpaolo Carosi. Axions and the Strong CP Problem. Rev. Mod. Phys., 82:557–602, 2010, arXiv:0807.3125 [hep-ph].
[18] Anson Hook. TASI Lectures on the Strong CP Problem and Axions. PoS, TASI2018:004, 2019, arXiv:1812.02669 [hep-ph].
[19] Pierre Sikivie. Invisible Axion Search Methods. Rev. Mod. Phys.,
93(1):015004, 2021, arXiv:2003.02206 [hep-ph].
[20] C. B. Adams et al. Axion Dark Matter. In Snowmass 2021, 3 2022, arXiv:2203.14923 [hep-ex].
[21] Luca Di Luzio, Maurizio Giannotti, Enrico Nardi, and Luca Visinelli. The landscape of QCD axion models. Phys. Rept., 870:1–117, 2020, arXiv:2003.01100 [hep-ph].
[22] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
[23] R. D. Peccei and Helen R. Quinn. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett., 38:1440–1443, Jun 1977.
[24] R. D. Peccei and Helen R. Quinn. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D, 16:1791–1797, Sep 1977.
[25] Steven Weinberg. A new light boson? Phys. Rev. Lett., 40:223–226, Jan 1978.
[26] Peter Svrcek and Edward Witten. Axions In String Theory. JHEP, 06:051, 2006, hep-th/0605206.
[27] Jamie I. McDonald and Luís B. Ventura. Optical properties of dynamical axion backgrounds. Phys. Rev. D, 101(12):123503, 2020, arXiv:1911.10221 [hep-ph].
[28] Jamie I. Mcdonald and Luís B. Ventura. Bending of light in axion backgrounds. 8 2020, arXiv:2008.12923 [hep-ph].
[29] Ciaran O’Hare. cajohare/axionlimits: Axionlimits. https://cajohare.github.io/AxionLimits/, July 2020.
[30] Richard Lynn Davis. Cosmic Axions from Cosmic Strings. Phys. Lett. B, 180:225–230, 1986.
[31] Diego Harari and P. Sikivie. On the Evolution of Global Strings in the Early Universe. Phys. Lett. B, 195:361–365, 1987.
[32] John Preskill, Mark B. Wise, and Frank Wilczek. Cosmology of the invisible axion. Physics Letters B, 120(1):127–132, 1983.
[33] L.F. Abbott and P. Sikivie. A cosmological bound on the invisible axion. Physics Letters B, 120(1):133–136, 1983.
[34] Michael Dine and Willy Fischler. The not-so-harmless axion. Physics Letters B, 120(1):137–141, 1983.
[35] C. J. Hogan and M. J. Rees. Axion miniclusters. Phys. Lett. B, 205:228–230, 1988.
[36] P. Sikivie and Q. Yang. Bose-Einstein Condensation of Dark Matter Axions. Phys. Rev. Lett., 103:111301, 2009, arXiv:0901.1106 [hep-ph].
[37] Pierre-Henri Chavanis. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results. Phys. Rev. D, 84:043531, 2011, arXiv:1103.2050 [astro-ph.CO].
[38] Hong Zhang. Axion Stars. Symmetry, 12(1):25, 2019, arXiv:1810.11473 [hep-ph].
[39] Enrico D. Schiappacasse and Mark P. Hertzberg. Analysis of Dark Matter Axion Clumps with Spherical Symmetry. JCAP, 01:037, 2018, arXiv:1710.04729 [hep-ph].
[40] Kohei Fujikura, Mark P. Hertzberg, Enrico D. Schiappacasse, and Masahide Yamaguchi. Microlensing constraints on axion stars including finite lens and source size effects. Phys. Rev. D, 104(12):123012, 2021, arXiv:2109.04283 [hep-ph].
[41] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega, and Giovanni Villadoro. The QCD axion, precisely. JHEP, 01:034, 2016,
arXiv:1511.02867 [hep-ph].
[42] E. Petroff, J. W. T. Hessels, and D. R. Lorimer. Fast Radio Bursts. Astron. Astrophys. Rev., 27(1):4, 2019, arXiv:1904.07947 [astro-ph.HE].
[43] E. Petroff, J. W. T. Hessels, and D. R. Lorimer. Fast radio bursts at the dawn of the 2020s. Astron. Astrophys. Rev., 30(1):2, 2022, arXiv:2107.10113 [astro-ph.HE].
[44] Bing Zhang. The physics of fast radio bursts. Rev. Mod. Phys., 95(3):035005, 2023, arXiv:2212.03972 [astro-ph.HE].
[45] Cherry Ng. A brief review on Fast Radio Bursts. 11 2023, arXiv:2311.01899 [astro-ph.HE].
[46] D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford. A bright millisecond radio burst of extragalactic origin. Science, 318:777, 2007, arXiv:0709.4301 [astro-ph].
[47] E. Platts, A. Weltman, A. Walters, S. P. Tendulkar, J. E. B. Gordin, and S. Kandhai. A Living Theory Catalogue for Fast Radio Bursts. Phys. Rept., 821:1–27, 2019, arXiv:1810.05836 [astro-ph.HE].
[48] Zarif Kader et al. High-time resolution search for compact objects using fast radio burst gravitational lens interferometry with CHIME/FRB. Phys. Rev. D, 106(4):043016, 2022, arXiv:2204.06014 [astro-ph.HE].
[49] Calvin Leung et al. Constraining primordial black holes using fast radio burst gravitational-lens interferometry with CHIME/FRB. Phys. Rev. D, 106(4):043017, 2022, arXiv:2204.06001 [astro-ph.HE].
[50] M. Amiri et al. The CHIME Fast Radio Burst Project: System Overview. 3 2018, arXiv:1803.11235 [astro-ph.IM].
[51] Mandana Amiri et al. The First CHIME/FRB Fast Radio Burst Catalog. Astrophys. J. Supp., 257(2):59, 2021, arXiv:2106.04352 [astro-ph.HE].
[52] Julian B. Muñoz, Ely D. Kovetz, Liang Dai, and Marc Kamionkowski. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter. Phys. Rev. Lett., 117(9):091301, 2016, arXiv:1605.00008 [astro-ph.CO].
[53] Ranjan Laha. Lensing of fast radio bursts: Future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion and boson stars. Phys. Rev. D, 102(2):023016, 2020, arXiv:1812.11810 [astro-ph.CO].
[54] Mawson W. Sammons, Jean-Pierre Macquart, Ron D. Ekers, Ryan M. Shannon, Hyerin Cho, J. Xavier Prochaska, Adam T. Deller, and Cherie K. Day. First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure. Astrophys. J., 900(2):122, 2020, arXiv:2002.12533 [astro-ph.CO].
[55] Kai Liao, S. B. Zhang, Zhengxiang Li, and He Gao. Constraints on compact dark matter with fast radio burst observations. Astrophys. J., 896(1):L11, 2020, arXiv:2003.13349 [astro-ph.CO].
[56] Huan Zhou, Zhengxiang Li, Kai Liao, Chenhui Niu, He Gao, Zhiqi Huang, Lu Huang, and Bing Zhang. Search for Lensing Signatures from the Latest Fast Radio Burst Observations and Constraints on the Abundance of Primordial Black Holes. Astrophys. J., 928(2):124, 2022, arXiv:2109.09251 [astro-ph.CO].
[57] Keren Krochek and Ely D. Kovetz. Constraining primordial black hole dark matter with CHIME fast radio bursts. Phys. Rev. D, 105(10):103528, 2022, arXiv:2112.03721 [astro-ph.CO].
[58] Liam Connor and Vikram Ravi. Stellar prospects for FRB gravitational lensing. Mon. Not. Roy. Astron. Soc., 521(3):4024–4038, 2023, arXiv:2206.14310 [astro-ph.CO].
[59] Masamune Oguri, Volodymyr Takhistov, and Kazunori Kohri. Revealing dark matter dress of primordial black holes by cosmological lensing. Phys. Lett. B, 847:138276, 2023, arXiv:2208.05957 [astro-ph.CO].
[60] Simon C. C. Ho, Tetsuya Hashimoto, Tomotsugu Goto, Yu-Wei Lin, Seong Jin Kim, Yuri Uno, and Tiger Y. Y. Hsiao. Future Constraints on Dark Matter with Gravitationally Lensed Fast Radio Bursts Detected by BURSTT. Astrophys. J., 950(1):53, 2023, arXiv:2304.04990 [astro-ph.HE].
[61] Surajit Kalita, Shruti Bhatporia, and Amanda Weltman. Gravitational lensing in modified gravity: a case study for Fast Radio Bursts. JCAP, 11:059, 2023, arXiv:2308.16604 [gr-qc].
[62] R. A. Allsman et al. MACHO project limits on black hole dark matter in the 1-30 solar mass range. Astrophys. J. Lett., 550:L169, 2001, astro-ph/0011506.
[63] P. Tisserand et al. Limits on the MACHO content of the galactic halo from the EROS-2 survey of the magellanic clouds. Astron. Astrophys., 469(2):387–404, 2007, arXiv:astro-ph/0607207v2 [astro-ph].
[64] A. Udalski, M. K. Szymański, and G. Szymański. OGLE-IV: Fourth phase of the optical gravitational lensing experiment. 2015, arXiv:1504.05966 [astro-ph.SR].
[65] Hiroko Niikura, Masahiro Takada, Shuichiro Yokoyama, Takahiro Sumi, and Shogo Masaki. Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events. Phys. Rev. D, 99(8):083503, 2019, arXiv:1901.07120 [astro-ph.CO].
[66] Hiroko Niikura et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astron., 3(6):524–534, 2019, arXiv:1701.02151 [astro-ph.CO].
[67] Ramesh Narayan and Matthias Bartelmann. Lectures on gravitational lensing. 1997, arXiv:astro-ph/9606001 [astro-ph].
[68] Shude Mao. Introduction to gravitational microlensing. 2008,
arXiv:0811.0441 [astro-ph].
[69] Djuna Croon, David McKeen, and Nirmal Raj. Gravitational microlensing by dark matter in extended structures. Phys. Rev. D, 101(8):083013, 2020, arXiv:2002.08962 [astro-ph.CO].
[70] Djuna Croon, David McKeen, Nirmal Raj, and Zihui Wang. Subaru-HSC
through a different lens: Microlensing by extended dark matter structures. Phys. Rev. D, 102(8):083021, 2020, arXiv:2007.12697 [astro-ph.CO].
[71] Danny Marfatia and Po-Yan Tseng. Correlated gravitational wave and microlensing signals of macroscopic dark matter. JHEP, 11:068, 2021, arXiv:2107.00859 [hep-ph].
[72] Anirudh Prabhu. Optical Lensing by Axion Stars: Observational Prospects with Radio Astrometry. 6 2020, arXiv:2006.10231 [astro-ph.CO].
[73] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020, arXiv:1807.06209 [astro-ph.CO].
[74] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. The Structure of cold dark matter halos. Astrophys. J., 462:563–575, 1996, astro-ph/9508025.
[75] Paul J. McMillan. The mass distribution and gravitational potential of the Milky Way. Mon. Not. Roy. Astron. Soc., 465(1):76–94, 2016, arXiv:1608.00971 [astro-ph.GA].
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *