|
[1] S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Applied Physics Reviews, vol. 6, Dec 2019. [2] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Physica Scripta, vol. 91, Apr 2016. [3] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys., vol. 84, pp. 621–669, May 2012. [4] P. Fritschel, M. Evans, and V. Frolov, “Balanced homodyne readout for quantum limited gravitational wave detectors,” Opt. Express, vol. 22, pp. 4224–4234, Feb 2014. [5] F. Arute and et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, Oct 2019. [6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. [7] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, 1997. [8] G. Badurek, Z. Hradil, A. Lvovsky, G. Molina-Teriza, H. Rauch, J. Řeháček, A. Vaziri, and M. Zawisky, 10 Maximum-Likelihood Estimationin Experimental Quantum Physics, pp. 373–414. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. [9] J. L. Bromberg, “The Birth of the Laser,” Physics Today, vol. 41, pp. 26–33, Oct 1988. [10] R. J. Glauber, “The Quantum Theory of Optical Coherence,” Phys. Rev., vol. 130, pp. 2529–2539, Jun 1963. [11] K. Banaszek and K. Wódkiewicz, “Operational theory of homodyne detection,” Phys. Rev. A, vol. 55, pp. 3117–3123, Apr 1997. [12] A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017. [13] M. M. Wilde, “Scribe Notes: Lecture 09 - Gaussian Quantum Information,” 2019. [14] M. M. Wilde, “Scribe Notes: Lecture 06 - Gaussian Quantum Information,” 2019. [15] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information. Napoli Series on physics and Astrophysics, Bibliopolis, 2005. [16] M. M. Wilde, “Scribe Notes: Lecture 10 - Gaussian Quantum Information,” 2019. [17] G. Cariolaro and R. Corvaja, “Implementation of Two-Mode Gaussian States Whose Covariance Matrix Has the Standard Form,” Symmetry, vol. 14, Jul 2022. [18] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett., vol. 84, pp. 2722–2725, Mar 2000. [19] H.-Y. Hsieh, Y.-R. Chen, H.-C. Wu, H. L. Chen, J. Ning, Y.-C. Huang, C.-M. Wu, and R.-K. Lee, “Extract the Degradation Information in Squeezed States with Machine Learning,” Phys. Rev. Lett., vol. 128, Feb 2022. [20] H.-Y. Hsieh, J. Ning, Y.-R. Chen, H.-C. Wu, H. L. Chen, C.-M. Wu, and R.-K. Lee, “Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography,” Symmetry, vol. 14, Apr 2022. [21] S. Nolan, A. Smerzi, and L. Pezzè, “A machine learning approach to Bayesian parameter estimation,” npj Quantum Information, vol. 7, p. 169, Dec 2021. [22] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural Ordinary Differential Equations,” 2019. [23] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real NVP,” in International Conference on Learning Representations, 2017. [24] G. Adesso, S. Ragy, and A. R. Lee, “Continuous Variable Quantum Information: Gaussian States and Beyond,” Open Systems & Information Dynamics, vol. 21, no. 01n02, 2014. [25] S. Ross, Simulation. Statistical Modeling and Decision Science, Elsevier Science, 2006. [26] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014. [27] K. Schütt, S. Chmiela, O. von Lilienfeld, A. Tkatchenko, K. Tsuda, and K. Müller, Machine Learning Meets Quantum Physics. Lecture Notes in Physics, Springer International Publishing, 2020. [28] R. Bracewell, The Fourier Transform and Its Applications. Circuits and systems, McGraw Hill, 2000. [29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 2015. [30] S. Abdoli, P. Cardinal, and A. Lameiras Koerich, “End-to-end environmental sound classification using a 1D convolutional neural network,” Expert Systems with Applica- tions, vol. 136, pp. 252–263, 2019. [31] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, Design Tools, and Application Domains of FPGAs,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810–1823, 2007. [32] C. Macchiavello, A. Riccardi, and M. F. Sacchi, “Quantum thermodynamics of two bosonic systems,” Phys. Rev. A, vol. 101, Jun 2020.
|