帳號:guest(3.128.197.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃楷鈞
作者(外文):Huang, Kai-Chun
論文名稱(中文):一維柯西型隨機漫步的艾狄胥-泰勒定理
論文名稱(外文):Erdős-Taylor Theorem for a one-dimensional Cauchy-type random walk
指導教授(中文):李志煌
鄭志豪
指導教授(外文):Li, Jhih-Huang
Teh, Jyh-Haur
口試委員(中文):陳冠宇
千野由喜
口試委員(外文):Chen, Guan-yu
Chino, Yuki
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:111021512
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:52
中文關鍵詞:機率隨機理論隨機漫步指向性聚合物統計物理
外文關鍵詞:ProbabilityRandom walkStochasticDirected polymerstatistical mechanics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文當中,我們探討對象為一個柯西型隨機漫步。由於其跳躍分佈遵循的柯西型分佈之期望值不存在,這樣的性質導致在分析此分佈時會有額外困難,因此在文獻中較少被探討。我們確立了h個獨立同分佈之一維柯西型隨機漫步的總碰撞次數的極限分佈。更加嚴謹地說,我們證明了以下極限:
\frac{2
i\tanh(
i)}{\log N}\sum_{1\leq i <j\leq h}\mathds{L}^{(i,j)}_N \overset{d}{\Longleftarrow} \Gamma (\frac{h(h-1)}{2},2),
當中L(i,j)_N:= \sum_{n=1}^N\mathds{1}_{\{S^{(i)}_n = S^{(j)}_n\}}為第(i, j)對的隨機漫步之互相碰撞次數,而Γ則為伽傌分佈。這個結果給出了在[ET60]所證明的一個經典定理,並且最近於[CSZ23]和[LZ24]被推廣的一個柯西型隨機漫步版本。
In this thesis, we investigate a random walk that lies within the Cauchy do-main of attraction, an area often overlooked in the literature because of the irregularities in its increment distribution. We identify the limiting distribution of the total pairwise collisions between h i.i.d. one-dimensional Cauchy random walks starting at the origin. Specifically, we establish that
\frac{2
i\tanh(
i)}{\log N}\sum_{1\leq i <j\leq h}\mathds{L}^{(i,j)}_N \overset{d}{\Longleftarrow} \Gamma (\frac{h(h-1)}{2},2),
where L(i,j)_N:= \sum_{n=1}^N\mathds{1}_{\{S^{(i)}_n = S^{(j)}_n\}} is the collision local times of independent copies i and j of the random walk, and \Gamma denotes the Gamma distribution. This provides an analogous result for the Cauchy random walk of a classical theorem that is obtained by [ET60], which is recently generalized in [CSZ23] and [LZ24].
Abstract
Acknowledgement
Section 1 Introduction--------------1
Section 2 Main results--------------6
Section 3 Local limit theorem--------------10
Section 4 Auxiliary results--------------17
Section 5 Chaos expansions of moments--------------24
Section 6 Integral inequalities--------------31
Section 7 Proofs of main results--------------40
Appendix Large Deviations results --------------45
[CSZ17b] F. Caravenna, R. Sun, and N. Zygouras. Universality in marginally relevant dis-
ordered systems. Ann. Appl. Prob. 27, 3050–3112 (2017).
[CSZ23] D. Lygkonis and N. Zygouras. Moments of the 2d directed polymer in the subcritical regime and a generalisation of the Erd¨os-Taylor theorem. Communications in Mathe-matical Physics 401, 2483–2520 (2023).
[ET60] P. Erd¨os, S.J. Taylor. Some problems concerning the structure of random walk paths.
Acta Math. Acad. Sci. Hungar. 11, 137–162, (1960).
[Ch49] Chung, K. L., and G. A. Hunt. On the Zeros of ∑ ±1. Annals of Mathematics 50, no. 2
(1949)
[B19] Berger, Q. Notes on random walks in the Cauchy domain of attraction. Probab. Theory
Relat. Fields 175, 1–44 (2019).
[F91] Feller, W. An introduction to probability theory and its applications. Vol. 2. 2nd ed.Wiley. (1991)
[N79] S. V. Nagaev. ”Large Deviations of Sums of Independent Random Variables.” Ann.
Probab. 7 (5) 745 - 789, October, (1979). https://doi.org/10.1214/aop/1176994938
[LZ24] Dimitris Lygkonis, N. Zygouras. A multivariate extension of the Erd¨os-Taylor theorem. arXiv:2202.08145 (2024+)
[B87] N. H. Bingham, C. M. Goldie, J. L. Teugels. Regular Variation. Cambridge University Press. (1987)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *