帳號:guest(18.118.146.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠豪
作者(外文):Chen, Guan-Hao
論文名稱(中文):在歐式空間上動力傳輸方程和薛丁格方程的史特萊卡斯估計
論文名稱(外文):On the Strichartz estimates for the kinetic transport equation and Schrodinger equation in R^d
指導教授(中文):江金城
指導教授(外文):Jiang, Jin-Cheng
口試委員(中文):蔡東和
方永富
口試委員(外文):Tsai, Dong-Ho
Fang, Yung-fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:111021506
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:16
中文關鍵詞:史特萊卡斯估計維格納變換動力傳輸方程薛丁格方程
外文關鍵詞:Strichartz estimatekinetic transport equationSchrodinger equationWigner transform
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
韋格納變換可將薛丁格方程的解變換到動力傳輸方程的解,而逆韋格納變換則可將動力傳輸方程的解變換到薛丁格方程的解。而動力傳輸方程和薛丁格方程的解皆有色散估計。從色散估計可推導出史特萊卡斯估計。這篇研究主要結果是證明韋格納變換可以從傳輸方程的色散估計推到薛丁格方程的色散估計,而如果初始值皆大於零,則反方向也可以,但反方向在一般情況下卻不一定。
The Wigner transform can transform the solution of the Schrödinger equation into the solution of the kinetic transport equation, and the inverse Wigner transform can transform the solution of the kinetic transport equation into the solution of the Schrödinger equation. Both the solutions of the kinetic transport equation and the Schrödinger equation have dispersive estimates. The Strichartz estimates can be derived from the dispersive estimates. The main result of this study is to show that we can use the Wigner transform to derive the dispersive estimate of the Sch\"odinger equation from the dispersive estimate of the the kinetic transport equation, and if the initial values are all greater than zero, the reverse direction is also possible, but in general, the reverse direction is not always possible.
摘要
Abstract
Introduction---------------------------------------------------1
Wigner transform-----------------------------------------------3
Strichartz estimates for the Schrodinger equation--------------5
Strichartz estimates for the kinetic transport equation--------9
Using the Wigner transform to discuss the relationship between Strichartz estimates for the kinetic transport equation and Strichartz estimate for the Schrodinger equation--------------------------11




[1] R. S. Strichartz, “Restriction of Fourier transform to quadratic surfaces and deay of solutions of wave equations,” Duke Math. J., vol. 44, 1977.
[2] J. Ginibre and G. Velo, “Smoothing properties and retarded estimates for some dispersive evo-lution equations,” Comm. Math. Phys., vol. 144, 1992.
[3] E. Y. Ovcharov, “Strichartz estimates for the kinetic transport equation,” SIAM jounal in math-ematical analysis, vol. 43, no. 3, pp. 1282–1310, 2011.
[4] T. Chen, R. Denlinger, and N. Pavlovic, “Local well-posedness for Boltzmann’s equation and the Boltzmann hierarchy via Wigner transform,” Communications in Mathematical Physics, vol. 6, no. 2, pp. 141–160, 2018.
[5] P. Geŕard, P. Markowich, N. Mauser, and F. Poupaud, “Homogenization limits and Wigner trans-forms,” Communications on Pure and Applied Mathematics 50, vol. 4, pp. 323–379, 1997.
[6] I. Gasser, P. Markowich, and B. Perthame, “Dispersion and moment lemmas revisited,” Journal of Differential Equations 156, 1999.
[7] M. Keel and T. Tao, “Endpoint Strichartz estimates,” Amer. J. Math., 1998.
[8] D. C. Ullrich, Complex Made Simple. Ameriacan Mathematical Society, 2008.
[9] R. D. Hajer Bahouri, Jean-Yves Chemin, Fourier Analysis And Nonlinear Equations. Springer, 2011.
[10] T. Tao, “Lecture notes 2 for 247a,” URL https://www.math.ucla.edu/ tao/247a.1.06f/notes2.pdf.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *