|
[1] R. S. Strichartz, “Restriction of Fourier transform to quadratic surfaces and deay of solutions of wave equations,” Duke Math. J., vol. 44, 1977. [2] J. Ginibre and G. Velo, “Smoothing properties and retarded estimates for some dispersive evo-lution equations,” Comm. Math. Phys., vol. 144, 1992. [3] E. Y. Ovcharov, “Strichartz estimates for the kinetic transport equation,” SIAM jounal in math-ematical analysis, vol. 43, no. 3, pp. 1282–1310, 2011. [4] T. Chen, R. Denlinger, and N. Pavlovic, “Local well-posedness for Boltzmann’s equation and the Boltzmann hierarchy via Wigner transform,” Communications in Mathematical Physics, vol. 6, no. 2, pp. 141–160, 2018. [5] P. Geŕard, P. Markowich, N. Mauser, and F. Poupaud, “Homogenization limits and Wigner trans-forms,” Communications on Pure and Applied Mathematics 50, vol. 4, pp. 323–379, 1997. [6] I. Gasser, P. Markowich, and B. Perthame, “Dispersion and moment lemmas revisited,” Journal of Differential Equations 156, 1999. [7] M. Keel and T. Tao, “Endpoint Strichartz estimates,” Amer. J. Math., 1998. [8] D. C. Ullrich, Complex Made Simple. Ameriacan Mathematical Society, 2008. [9] R. D. Hajer Bahouri, Jean-Yves Chemin, Fourier Analysis And Nonlinear Equations. Springer, 2011. [10] T. Tao, “Lecture notes 2 for 247a,” URL https://www.math.ucla.edu/ tao/247a.1.06f/notes2.pdf. |