帳號:guest(3.147.48.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳孟昕
作者(外文):Wu, Meng-Hsin
論文名稱(中文):具脾臟標靶之催化奈米抗原捕捉儲庫應用增強免疫治療
論文名稱(外文):Spleen-Targeted Catalytic Nanorservoir with Boosting Captured Antigen Delivery for Immune Therapy
指導教授(中文):胡尚秀
莊淳宇
指導教授(外文):Hu, Shang-Hsiu
Chuang, Chun-Yu
口試委員(中文):李亦淇
黃玠誠
謝明佑
口試委員(外文):Lee, I-Chi
Huang, Chieh-Cheng
Shie, Ming-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:111012505
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:172
中文關鍵詞:癌症免疫治療三氧化二鐵多聚多巴胺二氧化錳類芬頓反應抗原捕捉脾臟累積
外文關鍵詞:Cancer immunotherapyiron (III) oxidePolydopamineManganese dioxideFenton-like reactionAntigen captureSpleen accumulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
免疫抗原呈現細胞(APCs)活化後會遷移至淋巴結,誘導下游效應 T 淋巴
細胞的生成。這些 T 淋巴細胞會滲透到癌細胞中,通過相互作用抑制轉移性腫
瘤。然而,目前尚無能夠精準靶向樹突狀細胞(DCs)的奈米顆粒,且抗原利用
率低。此外,腫瘤的免疫特權和異質性使其能夠抵抗免疫攻擊,限制了免疫治療
的效果。
在本研究中,我們設計了一種奈米催化儲庫(CN)。該儲庫以平板六角形的
三氧化二鐵(α-Fe2O3)為核心載體,內含兒茶酚作為抗原儲庫和二氧化錳作為催
化劑,用於引發整體免疫反應。靜脈注射的奈米顆粒通過其扁平形狀和負電荷特
性,經血液輸送至脾臟免疫器官。在肺部腫瘤處,鐵和錳離子協同觸發的類芬頓
反應釋放 Fe2+/Mn2+,降低癌細胞中高表達的谷胱甘肽(GSH)水平,從而增強化
學動力療法的效果。同時,氧化還原過程催化內源性 H2O2 分解產生 O2,緩解腫
瘤微環境(TME)的缺氧問題。另一方面,CN@ antigen 通過 CN 載體在細胞內
生成劇毒氫氧自由基(•OH),誘發免疫原性細胞死亡(ICD),並在體外捕獲損
傷相關分子模式(DAMPs)和腫瘤特異性抗原(TSA)。這些抗原被脾臟的樹突
狀細胞吞噬後,促進其成熟,並遷移至淋巴結,誘導 T 細胞浸潤,提高免疫細胞
的識別能力。
最後,加入預防性療程以提前防止腫瘤生成並徹底抑制腫瘤轉移。並且通過
使用免疫檢查點抑制劑(aPD-1)阻斷腫瘤細胞與 T 細胞的配體結合,並輔以免
疫激活劑(R848)來提高樹突細胞的成熟率,予以實現良好的抗腫瘤免疫反應。
After activation, antigen-presenting cells (APCs) migrate to the lymph nodes, where they induce the generation of downstream effector T lymphocytes. These T lymphocytes infiltrate cancer cells and interact with them to inhibit metastatic tumors.
However, currently, there are no nanoparticles that can precisely target dendritic cells(DCs), and the antigen utilization rate is low. Additionally, the immune privilege and heterogeneity of tumors allow them to resist immune attacks, limiting the effectiveness
of immunotherapy.
In this study, we designed a nanocatalytic reservoir (CN). This reservoir uses flat hexagonal hematite (α-Fe2O3) as a core delivery vehicle, containing catechol as an antigen repository and manganese dioxide as an effective catalytic stimulus to induce a
comprehensive immune response. Intravenously injected nanoparticles, due to their flat shape and negative charge, are transported via the bloodstream to immune organs such as the spleen. At the tumor site in the lungs, the Fenton-like reaction triggered by iron and manganese ions releases Fe2+/Mn2+, reducing the high levels of glutathione (GSH)
expressed in cancer cells, thereby enhancing the level of chemodynamic therapy.
Simultaneously, the redox process catalyzes the decomposition of endogenous H2O2 to produce O2, alleviating the hypoxia in the tumor microenvironment (TME). On the other hand, CN@ antigen uses the CN carrier to generate highly toxic hydroxyl radicals (•OH) inside the cells, inducing immunogenic cell death (ICD). It captures damage
associated molecular patterns (DAMPs) and tumor-specific antigens (TSAs) in vitro.
These antigens are then phagocytosed by DCs in the spleen, promoting their maturation and migration to the lymph nodes, inducing T cell infiltration and improving the immune cells' recognition capability.
Finally, add preventive treatments to proactively prevent tumor formation and thoroughly suppress tumor metastasis. Use immune checkpoint inhibitors (aPD-1) to block the binding of tumor cell ligands to T cells, and complement this with immune activators (R848) to enhance the maturation of DCs to achieve a good anti-tumor immune response.
Table of contents
中文摘要 ...................................................................................................................II
ABSTRACT...............................................................................................................III
致謝 ...................................................................................................................V
TABLE OF CONTENTS.......................................................................................... VI
LIST OF SCHEMES.................................................................................................IX
LIST OF FIGURES ....................................................................................................X
CHAPTER 1 INTRODUCTION................................................................................1
CHAPTER 2 LITERATURE REVIEW AND THEORY.........................................3
2.1 INTRODUCTION OF LUNG CANCER .........................................................................3
2.1.1 A summary of the present condition of lung cancer .....................................3
2.1.2 Mechanism in the tumor microenvironment.................................................5
2.1.3 Advancements in the Treatment of Lung Cancer..........................................9
2.2 OVERVIEW OF THE CANCER IMMUNOTHERAPY ....................................................11
2.2.1 Types and development of immunotherapy................................................11
2.2.2 Immune checkpoint inhibitors therapy .......................................................15
2.2.3 Mechanism of the immunogenic cell death (ICD)......................................18
2.2.4 The dying cells express damage-associated molecular patterns.................21
2.3 SPLEEN-SELECTIVE DELIVERY SYSTEM................................................................24
2.3.1 System of spleen accumulation...................................................................24
2.3.2 Nanoparticles boost immunity by delivering antigens to immune organs..30
2.3.3 The antigen is delivered by dendritic cells and induces their maturation...33
2.3.4 Activation of antigen-presenting cells stimulates the immune system. ......35
2.4 INTRODUCTION OF CATALYTIC NANOSERVOIR......................................................38
2.4.1 Advantages of nanoparticle-mediated delivery in cancer immunotherapy.38
2.4.2 The applications of Iron oxide (Fe2O3) nanoparticles in biomedicine........40
2.4.3 The significance of polydopamine-embedded nanoparticles in immune
stimulation.................................................................................................43
2.4.4 Introduction of chemodynamic therapy (CDT) effect ................................44
2.4.5 Advantages of manganese ion nanomaterials in immunotherapy...............47
CHAPTER 3 EXPERIMENTAL SECTION...........................................................50
3.1 MATERIALS .........................................................................................................50
3.2 APPARATUS .........................................................................................................55
3.3 METHOD .............................................................................................................58
VII
3.3.1 Synthesis of hexagonal nanoplates α-Fe2O3 ...............................................58
3.3.2 Polydopamine coating of α-Fe2O3 ..............................................................58
3.3.3 Synthesis of Catalytic Nanoreservoir (CN) ................................................59
3.3.4 Characterizations of nanoparticles..............................................................60
3.3.5 Characterizations of the materials functionality .........................................61
3.3.6 Cell culture for B16F10/DC2.4/RAW264.7 ...............................................62
3.3.7 Live & Dead with nanoparticles.................................................................64
3.3.8 Cellular viability test...................................................................................64
3.3.9 Cellular uptake assay ..................................................................................65
3.3.10 Preparation of nanomaterials with attached proteins................................67
3.3.11 Characterizations of antigen-captured nanoparticles................................67
3.3.12 Dendritic cell maturation ..........................................................................68
3.3.13 Macrophage polarization ..........................................................................70
3.3.14 DCFH-DA for hydroxyl radical ROS detections......................................71
3.3.15 Nanoparticles targeting test and ROS detection in Mitochondria ............72
3.3.16 In vivo biodistribution study.....................................................................73
3.3.17 In vivo nanoparticles colocalization and metabolism study .....................76
3.3.18 Using nanoparticles loaded with immune checkpoint and adjuvants in
flow cytometry ..........................................................................................77
CHAPTER 4 RESULTS AND DISCUSSION .........................................................79
4.1 PROPERTY STUDY ................................................................................................79
4.1.1 Synthesis and characterization of nanoparticles.........................................80
4.1.2 The functionality of nanoparticles ..............................................................93
4.2 IN VITRO STUDY ..................................................................................................99
4.2.1 The differences in cytotoxicity between different cells and nanoparticles
.................................................................................................................100
4.2.2 DC2.4 cellular uptake following the treatment.........................................101
4.2.3 Analyzing dendritic cell maturation in in vitro experiments using relevant
markers....................................................................................................105
4.2.4 RAW264.7cellular uptake following the treatment ..................................110
4.2.5 Analyzing macrophage polarization in in vitro experiments using relevant
markers....................................................................................................114
4.2.6 B16F10 cellular uptake following the treatment ......................................119
4.2.7 The intracellular catalysis assay for testing the generation of ROS in
nanoparticles ...........................................................................................122
4.2.8 Antigen capture study ...............................................................................126
4.3 IN VIVO STUDY ..................................................................................................133
4.3.1 Accumulation tests of CN .........................................................................133
VIII
4.3.2 Colocalization of nanoparticles in organs.................................................139
4.3.3 Analysis of the anti-tumor immune response following treatment with CNbased nanoparticle therapy......................................................................142
CHAPTER 5 CONCLUSION.................................................................................158
CHAPTER 6 REFERENCE ...................................................................................159
Chapter 6 Reference
(1) Zhou, B.; Zang, R.; Zhang, M.; Song, P.; Liu, L.; Bie, F.; Peng, Y.; Bai, G.; Gao, S.
Worldwide burden and epidemiological trends of tracheal, bronchus, and lung cancer:
A population-based study. eBioMedicine 2022, 78, 103951. DOI:
https://doi.org/10.1016/j.ebiom.2022.103951.
(2) Kratzer, T. B.; Bandi, P.; Freedman, N. D.; Smith, R. A.; Travis, W. D.; Jemal, A.;
Siegel, R. L. Lung cancer statistics, 2023. Cancer 2024, 130 (8), 1330-1348.
(3) Siegel, R. L.; Giaquinto, A. N.; Jemal, A. Cancer statistics, 2024. CA: a cancer
journal for clinicians 2024, 74 (1), 12-49.
(4) Islami, F.; Goding Sauer, A.; Miller, K. D.; Siegel, R. L.; Fedewa, S. A.; Jacobs, E.
J.; McCullough, M. L.; Patel, A. V.; Ma, J.; Soerjomataram, I.; et al. Proportion and
number of cancer cases and deaths attributable to potentially modifiable risk factors in
the United States. CA: A Cancer Journal for Clinicians 2018, 68 (1), 31-54. DOI:
https://doi.org/10.3322/caac.21440 (acccessed 2024/06/04).
(5) Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y.-g.; Choi, B. H.; Kang, K.-W.;
Jeong, H.; Park, Y.; et al. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based
Spectroscopic Analysis of Circulating Exosomes. ACS Nano 2020, 14 (5), 5435-5444.
DOI: 10.1021/acsnano.9b09119.
(6) Sharma, R. Mapping of global, regional and national incidence, mortality and
mortality-to-incidence ratio of lung cancer in 2020 and 2050. International Journal of
Clinical Oncology 2022, 27 (4), 665-675.
(7) Sun, Y.; Li, Y.; Shi, S.; Dong, C. Exploiting a new approach to destroy the barrier
of tumor microenvironment: nano-architecture delivery systems. Molecules 2021, 26
(9), 2703.
(8) Wei, R.; Liu, S.; Zhang, S.; Min, L.; Zhu, S. Cellular and extracellular components
in tumor microenvironment and their application in early diagnosis of cancers.
Analytical Cellular Pathology 2020, 2020.
(9) Hooglugt, A.; Van der Stoel, M. M.; Boon, R. A.; Huveneers, S. Endothelial
YAP/TAZ signaling in angiogenesis and tumor vasculature. Frontiers in oncology 2021,
10, 612802.
(10) Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.;
Deng, H.; He, Y. The role of microenvironment in tumor angiogenesis. Journal of
Experimental & Clinical Cancer Research 2020, 39, 1-19.
(11) Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer:
molecular mechanisms and therapeutic interventions. Signal transduction and targeted
therapy 2023, 8 (1), 70.
(12) Tan, B.; Zhao, C.; Wang, J.; Tiemuer, A.; Zhang, Y.; Yu, H.; Liu, Y. Rational design
160
of pH-activated upconversion luminescent nanoprobes for bioimaging of tumor acidic
microenvironment and the enhancement of photothermal therapy. Acta Biomaterialia
2023, 155, 554-563. DOI: https://doi.org/10.1016/j.actbio.2022.08.078.
(13) Arneth, B. Tumor microenvironment. Medicina 2019, 56 (1), 15.
(14) Lei, X.; Lei, Y.; Li, J.-K.; Du, W.-X.; Li, R.-G.; Yang, J.; Li, J.; Li, F.; Tan, H.-B.
Immune cells within the tumor microenvironment: Biological functions and roles in
cancer immunotherapy. Cancer letters 2020, 470, 126-133.
(15) Anderson, N. M.; Simon, M. C. The tumor microenvironment. Current Biology
2020, 30 (16), R921-R925. DOI: https://doi.org/10.1016/j.cub.2020.06.081.
(16) Zou, W. Immune regulation in the tumor microenvironment and its relevance in
cancer therapy. Cellular & Molecular Immunology 2022, 19 (1), 1-2.
(17) Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T cells in tumor
microenvironment: new mechanisms, potential therapeutic strategies and future
prospects. Molecular cancer 2020, 19, 1-23.
(18) Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer
immunotherapy: A review. Journal of cellular physiology 2019, 234 (6), 8509-8521.
(19) Yin, H.; Xie, C.; Zuo, Z.; Xie, D.; Wang, Q. A CTL-Inspired Killing System Using
Ultralow-Dose Chemical-Drugs to Induce a Pyroptosis-Mediated Antitumor Immune
Function. Advanced Materials 2024, 36 (13), 2309839. DOI:
https://doi.org/10.1002/adma.202309839 (acccessed 2024/06/04).
(20) Zhou, Z.; He, H.; Wang, K.; Shi, X.; Wang, Y.; Su, Y.; Wang, Y.; Li, D.; Liu, W.;
Zhang, Y. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger
pyroptosis in target cells. Science 2020, 368 (6494), eaaz7548.
(21) Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological
treatments at the turn of the third millennium. Frontiers in pharmacology 2018, 9,
421926.
(22) Aggarwal, V.; Sak, K.; Aggarwal, D.; Parashar, G.; Parashar, N. C.; Sood, S.;
Tuorkey, M. J.; Kaur, J.; Buttar, H. S.; Tuli, H. S. Designing personalized and
innovative novel drug therapies for cancer treatment. Drug targets in cellular processes
of cancer: From nonclinical to preclinical models 2020, 213-228.
(23) Gao, Y.; Gao, D.; Shen, J.; Wang, Q. A review of mesoporous silica nanoparticle
delivery systems in chemo-based combination cancer therapies. Frontiers in chemistry
2020, 8, 598722.
(24) van den Boogaard, W. M.; Komninos, D. S.; Vermeij, W. P. Chemotherapy sideeffects: not all DNA damage is equal. Cancers 2022, 14 (3), 627.
(25) Debela, D. T.; Muzazu, S. G.; Heraro, K. D.; Ndalama, M. T.; Mesele, B. W.; Haile,
D. C.; Kitui, S. K.; Manyazewal, T. New approaches and procedures for cancer
treatment: Current perspectives. SAGE open medicine 2021, 9, 20503121211034366.
161
(26) Shuel, S. L. Targeted cancer therapies. Clinical pearls for primary care 2022, 68
(7), 515-518. DOI: 10.46747/cfp.6807515.
(27) Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies 2020,
9 (3), 34.
(28) Johnson, D. B.; Nebhan, C. A.; Moslehi, J. J.; Balko, J. M. Immune-checkpoint
inhibitors: long-term implications of toxicity. Nature Reviews Clinical Oncology 2022,
19 (4), 254-267.
(29) Zhang, C.; Zhang, C.; Wang, H. Immune-checkpoint inhibitor resistance in cancer
treatment: current progress and future directions. Cancer Letters 2023, 216182.
(30) Shiravand, Y.; Khodadadi, F.; Kashani, S. M. A.; Hosseini-Fard, S. R.; Hosseini,
S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune checkpoint
inhibitors in cancer therapy. Current Oncology 2022, 29 (5), 3044-3060.
(31) Liu, S.; Zhou, Y.; Hu, C.; Cai, L.; Pang, M. Covalent organic framework-based
nanocomposite for synergetic photo-, chemodynamic-, and immunotherapies. ACS
Applied Materials & Interfaces 2020, 12 (39), 43456-43465.
(32) Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.;
Hou, Z.; Lin, J. A multifunctional cascade bioreactor based on hollow‐structured
Cu2MoS4 for synergetic cancer chemo ‐ dynamic therapy/starvation
therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Advanced
materials 2019, 31 (51), 1905271.
(33) Kciuk, M.; Yahya, E. B.; Mohamed Ibrahim Mohamed, M.; Rashid, S.; Iqbal, M.
O.; Kontek, R.; Abdulsamad, M. A.; Allaq, A. A. Recent advances in molecular
mechanisms of cancer immunotherapy. Cancers 2023, 15 (10), 2721.
(34) Demaria, O.; Cornen, S.; Daëron, M.; Morel, Y.; Medzhitov, R.; Vivier, E.
Harnessing innate immunity in cancer therapy. Nature 2019, 574 (7776), 45-56.
(35) Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cellular & molecular immunology 2020, 17 (8), 807-821.
(36) Liu, Y. e.; Wang, Y.; Yang, Y.; Weng, L.; Wu, Q.; Zhang, J.; Zhao, P.; Fang, L.; Shi,
Y.; Wang, P. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal
transduction and targeted therapy 2023, 8 (1), 104.
(37) Tang, L.; Huang, Z.; Mei, H.; Hu, Y. Immunotherapy in hematologic malignancies:
achievements, challenges and future prospects. Signal Transduction and Targeted
Therapy 2023, 8 (1), 306.
(38) Hargrave, A.; Mustafa, A. S.; Hanif, A.; Tunio, J. H.; Hanif, S. N. M. Recent
advances in cancer immunotherapy with a focus on FDA-approved vaccines and
Neoantigen-based vaccines. Vaccines 2023, 11 (11), 1633.
(39) Rana, I.; Oh, J.; Baig, J.; Moon, J. H.; Son, S.; Nam, J. Nanocarriers for cancer
162
nano-immunotherapy. Drug Delivery and Translational Research 2023, 13 (7), 1936-
1954.
(40) Said, S. S.; Ibrahim, W. N. Cancer resistance to immunotherapy: comprehensive
insights with future perspectives. Pharmaceutics 2023, 15 (4), 1143.
(41) Lahiri, A.; Maji, A.; Potdar, P. D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.;
Paul, M. K. Lung cancer immunotherapy: progress, pitfalls, and promises. Molecular
cancer 2023, 22 (1), 40.
(42) Wu, Y.; Zhang, Z.; Wei, Y.; Qian, Z.; Wei, X. Nanovaccines for cancer
immunotherapy: current knowledge and future perspectives. Chinese Chemical Letters
2023, 34 (8), 108098.
(43) Chen, F.; Wang, Y.; Gao, J.; Saeed, M.; Li, T.; Wang, W.; Yu, H. Nanobiomaterialbased vaccination immunotherapy of cancer. Biomaterials 2021, 270, 120709.
(44) Banchereau, J.; Palucka, K. Cancer vaccines on the move. Nature reviews Clinical
oncology 2018, 15 (1), 9-10.
(45) Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer
vaccines: advancements, challenges, and prospects. Signal Transduction and Targeted
Therapy 2023, 8 (1), 450.
(46) Laskowski, T. J.; Biederstädt, A.; Rezvani, K. Natural killer cells in antitumour
adoptive cell immunotherapy. Nature Reviews Cancer 2022, 22 (10), 557-575.
(47) Das, A.; Ghose, A.; Naicker, K.; Sanchez, E.; Chargari, C.; Rassy, E.; Boussios, S.
Advances in adoptive T-cell therapy for metastatic melanoma. Current Research in
Translational Medicine 2023, 103404.
(48) Mondal, M.; Guo, J.; He, P.; Zhou, D. Recent advances of oncolytic virus in cancer
therapy. Human vaccines & immunotherapeutics 2020, 16 (10), 2389-2402.
(49) Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity:
Barrier or bridge to effective oncolytic virus therapy? Cytokine & Growth Factor
Reviews 2023, 70, 1-12.
(50) Liu, P.; Ye, M.; Wu, Y.; Wu, L.; Lan, K.; Wu, Z. Hyperthermia combined with
immune checkpoint inhibitor therapy: Synergistic sensitization and clinical outcomes.
Cancer medicine 2023, 12 (3), 3201-3221.
(51) Ma, W.; Xue, R.; Zhu, Z.; Farrukh, H.; Song, W.; Li, T.; Zheng, L.; Pan, C.-x.
Increasing cure rates of solid tumors by immune checkpoint inhibitors. Experimental
Hematology & Oncology 2023, 12 (1), 10.
(52) Shalit, A.; Sarantis, P.; Koustas, E.; Trifylli, E.-M.; Matthaios, D.; Karamouzis, M.
V. Predictive biomarkers for immune-related endocrinopathies following immune
checkpoint inhibitors treatment. Cancers 2023, 15 (2), 375.
(53) Centanni, M.; Moes, D. J. A.; Trocóniz, I. F.; Ciccolini, J.; van Hasselt, J. C.
Clinical pharmacokinetics and pharmacodynamics of immune checkpoint inhibitors.
163
Clinical pharmacokinetics 2019, 58, 835-857.
(54) Ruff, S. M.; Manne, A.; Cloyd, J. M.; Dillhoff, M.; Ejaz, A.; Pawlik, T. M. Current
landscape of immune checkpoint inhibitor therapy for hepatocellular carcinoma.
Current Oncology 2023, 30 (6), 5863-5875.
(55) Meng, L.; Wu, H.; Wu, J.; Ding, P. a.; He, J.; Sang, M.; Liu, L. Mechanisms of
immune checkpoint inhibitors: insights into the regulation of circular RNAS involved
in cancer hallmarks. Cell Death & Disease 2024, 15 (1), 3.
(56) Franzin, R.; Netti, G. S.; Spadaccino, F.; Porta, C.; Gesualdo, L.; Stallone, G.;
Castellano, G.; Ranieri, E. The use of immune checkpoint inhibitors in oncology and
the occurrence of AKI: where do we stand? Frontiers in immunology 2020, 11, 574271.
(57) Ponvilawan, B.; Khan, A. W.; Subramanian, J.; Bansal, D. Non-Invasive Predictive
Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors.
Cancers 2024, 16 (6), 1225.
(58) Weinmann, S. C.; Pisetsky, D. S. Mechanisms of immune-related adverse events
during the treatment of cancer with immune checkpoint inhibitors. Rheumatology 2019,
58 (Supplement_7), vii59-vii67.
(59) Guo, H.; Liu, Y.; Li, X.; Wang, H.; Mao, D.; Wei, L.; Ye, X.; Qu, D.; Huo, J.; Chen,
Y. Magnetic Metal–Organic Framework-Based Nanoplatform with Platelet Membrane
Coating as a Synergistic Programmed Cell Death Protein 1 Inhibitor against
Hepatocellular Carcinoma. ACS nano 2023, 17 (23), 23829-23849.
(60) Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death
in cancer therapy: Present and emerging inducers. Journal of cellular and molecular
medicine 2019, 23 (8), 4854-4865.
(61) Feng, Y.; Qi, S.; Yu, X.; Zhang, X.; Zhu, H.; Yu, G. Supramolecular Modulation
of Tumor Microenvironment through Pillar [5] arene-Based Host–Guest Recognition
to Synergize Cancer Immunotherapy. Journal of the American Chemical Society 2023,
145 (34), 18789-18799.
(62) Gao, J.; Wang, W.-q.; Pei, Q.; Lord, M. S.; Yu, H.-j. Engineering nanomedicines
through boosting immunogenic cell death for improved cancer immunotherapy. Acta
Pharmacologica Sinica 2020, 41 (7), 986-994.
(63) Aaes, T. L.; Vandenabeele, P. The intrinsic immunogenic properties of cancer cell
lines, immunogenic cell death, and how these influence host antitumor immune
responses. Cell Death & Differentiation 2021, 28 (3), 843-860.
(64) Qi, J.; Jin, F.; Xu, X.; Du, Y. Combination cancer immunotherapy of nanoparticlebased immunogenic cell death inducers and immune checkpoint inhibitors.
International journal of nanomedicine 2021, 1435-1456.
(65) Shi, F.; Huang, X.; Hong, Z.; Lu, N.; Huang, X.; Liu, L.; Liang, T.; Bai, X.
Improvement strategy for immune checkpoint blockade: A focus on the combination
164
with immunogenic cell death inducers. Cancer Letters 2023, 216167.
(66) Ghiringhelli, F.; Rébé, C. Using immunogenic cell death to improve anticancer
efficacy of immune checkpoint inhibitors: From basic science to clinical application.
Immunological Reviews 2024, 321 (1), 335-349.
(67) Ahmed, A.; Tait, S. W. Targeting immunogenic cell death in cancer. Molecular
oncology 2020, 14 (12), 2994-3006.
(68) Horner, E.; Lord, J. M.; Hazeldine, J. The immune suppressive properties of
damage associated molecular patterns in the setting of sterile traumatic injury. Frontiers
in immunology 2023, 14, 1239683.
(69) Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.;
Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nature
reviews cancer 2012, 12 (12), 860-875.
(70) Xi, Y.; Chen, L.; Tang, J.; Yu, B.; Shen, W.; Niu, X. Amplifying “eat me signal”
by immunogenic cell death for potentiating cancer immunotherapy. Immunological
Reviews 2024, 321 (1), 94-114.
(71) Alexandre, Y. O.; Mueller, S. N. Splenic stromal niches in homeostasis and
immunity. Nature Reviews Immunology 2023, 23 (11), 705-719.
(72) Wang, F.; Lou, J.; Gao, X.; Zhang, L.; Sun, F.; Wang, Z.; Ji, T.; Qin, Z. Spleentargeted nanosystems for immunomodulation. Nano Today 2023, 52, 101943.
(73) Li, S.; Wang, Y.; Wu, M.; Younis, M. H.; Olson, A. P.; Barnhart, T. E.; Engle, J.
W.; Zhu, X.; Cai, W. Spleen ‐ targeted glabridin ‐ loaded nanoparticles regulate
polarization of monocyte/macrophage (Mo/M φ ) for the treatment of cerebral
ischemia‐reperfusion injury. Advanced Materials 2022, 34 (39), 2204976.
(74) He, X.; Wang, J.; Tang, Y.; Chiang, S. T.; Han, T.; Chen, Q.; Qian, C.; Shen, X.;
Li, R.; Ai, X. Recent Advances of Emerging Spleen‐Targeting Nanovaccines for
Immunotherapy. Advanced Healthcare Materials 2023, 12 (23), 2300351.
(75) Pan, L.; Zhang, L.; Deng, W.; Lou, J.; Gao, X.; Lou, X.; Liu, Y.; Yao, X.; Sheng,
Y.; Yan, Y. Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for
synergistic immunostimulation and Th1 immune responses. Journal of Controlled
Release 2023, 357, 133-148.
(76) Zhang, L.-x.; Sun, X.-m.; Jia, Y.-b.; Liu, X.-g.; Dong, M.; Xu, Z. P.; Liu, R.-t.
Nanovaccine’s rapid induction of anti-tumor immunity significantly improves
malignant cancer immunotherapy. Nano Today 2020, 35, 100923.
(77) Kimura, S.; Khalil, I. A.; Elewa, Y. H.; Harashima, H. Spleen selective
enhancement of transfection activities of plasmid DNA driven by octaarginine and an
ionizable lipid and its implications for cancer immunization. Journal of controlled
release 2019, 313, 70-79.
(78) Lee, J.; Kim, D.; Byun, J.; Wu, Y.; Park, J.; Oh, Y.-K. In vivo fate and intracellular
165
trafficking of vaccine delivery systems. Advanced Drug Delivery Reviews 2022, 186,
114325.
(79) Merkel, T. J.; Jones, S. W.; Herlihy, K. P.; Kersey, F. R.; Shields, A. R.; Napier, M.;
Luft, J. C.; Wu, H.; Zamboni, W. C.; Wang, A. Z. Using mechanobiological mimicry of
red blood cells to extend circulation times of hydrogel microparticles. Proceedings of
the National Academy of Sciences 2011, 108 (2), 586-591.
(80) Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J.
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and
CRISPR–Cas gene editing. Nature nanotechnology 2020, 15 (4), 313-320.
(81) Liu, M.; Li, J.; Zhao, D.; Yan, N.; Zhang, H.; Liu, M.; Tang, X.; Hu, Y.; Ding, J.;
Zhang, N. Branched PEG-modification: A new strategy for nanocarriers to evade of the
accelerated blood clearance phenomenon and enhance anti-tumor efficacy.
Biomaterials 2022, 283, 121415.
(82) Zhang, D.; Atochina-Vasserman, E. N.; Maurya, D. S.; Liu, M.; Xiao, Q.; Lu, J.;
Lauri, G.; Ona, N.; Reagan, E. K.; Ni, H. Targeted delivery of mRNA with onecomponent ionizable amphiphilic Janus dendrimers. Journal of the American Chemical
Society 2021, 143 (43), 17975-17982.
(83) Li, J.; Ren, H.; Qiu, Q.; Yang, X.; Zhang, J.; Zhang, C.; Sun, B.; Lovell, J. F.;
Zhang, Y. Manganese coordination micelles that activate stimulator of interferon genes
and capture in situ tumor antigens for cancer metalloimmunotherapy. ACS nano 2022,
16 (10), 16909-16923.
(84) Wang, D.; Yu, Z.; Qi, Y.; Hu, K.; Zhou, T.; Liu, J.; Rao, W. Liquid metal
nanoplatform based autologous cancer vaccines. ACS nano 2023, 17 (14), 13278-13295.
(85) Xu, P.; Ma, J.; Zhou, Y.; Gu, Y.; Cheng, X.; Wang, Y.; Wang, Y.; Gao, M.
Radiotherapy-Triggered In Situ Tumor Vaccination Boosts Checkpoint Blockaded
Immune Response via Antigen-Capturing Nanoadjuvants. ACS nano 2023, 18 (1),
1022-1040.
(86) Gardner, A.; de Mingo Pulido, Á .; Ruffell, B. Dendritic cells and their role in
immunotherapy. Frontiers in immunology 2020, 11, 531484.
(87) Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani,
S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cellular &
molecular immunology 2023, 20 (5), 432-447.
(88) Janssens, S.; Rennen, S.; Agostinis, P. Decoding immunogenic cell death from a
dendritic cell perspective. Immunological Reviews 2024, 321 (1), 350-370.
(89) Kwon, S.; Meng, F.; Tamam, H.; Gadalla, H. H.; Wang, J.; Dong, B.; Hopf
Jannasch, A. S.; Ratliff, T. L.; Yeo, Y. Systemic Delivery of Paclitaxel by Find-Me
Nanoparticles Activates Antitumor Immunity and Eliminates Tumors. ACS nano 2024,
18 (4), 3681-3698.
166
(90) Moussion, C.; Delamarre, L. Antigen cross-presentation by dendritic cells: A
critical axis in cancer immunotherapy. In Seminars in Immunology, 2024; Elsevier: Vol.
71, p 101848.
(91) Dong, H.; Li, Q.; Zhang, Y.; Ding, M.; Teng, Z.; Mou, Y. Biomaterials Facilitating
Dendritic Cell‐Mediated Cancer Immunotherapy. Advanced Science 2023, 10 (18),
2301339.
(92) Qi, H.; Li, Y.; Geng, Y.; Wan, X.; Cai, X. Nanoparticle-mediated immunogenic
cell death for cancer immunotherapy. International Journal of Pharmaceutics 2024,
124045.
(93) Klopfleisch, R. Macrophage reaction against biomaterials in the mouse model–
Phenotypes, functions and markers. Acta biomaterialia 2016, 43, 3-13.
(94) Hatano, S.; Watanabe, H. Regulation of macrophage and dendritic cell function by
chondroitin sulfate in innate to antigen-specific adaptive immunity. Frontiers in
immunology 2020, 11, 504106.
(95) Manoharan, I.; Prasad, P. D.; Thangaraju, M.; Manicassamy, S. Lactate-dependent
regulation of immune responses by dendritic cells and macrophages. Frontiers in
immunology 2021, 12, 691134.
(96) Dey, A. K.; Gonon, A.; Pécheur, E.-I.; Pezet, M.; Villiers, C.; Marche, P. N. Impact
of gold nanoparticles on the functions of macrophages and dendritic cells. Cells 2021,
10 (1), 96.
(97) Qin, X.; Zhang, B.; Sun, X.; Zhang, M.; Xiao, D.; Lin, S.; Liu, Z.; Cui, W.; Lin, Y.
Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances
Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by
Modulating Dendritic Cells and Macrophages. ACS Applied Materials & Interfaces
2023, 15 (6), 7793-7803.
(98) Zhang, Y.; Xu, H.; Jiang, L.; Liu, Z.; Lian, C.; Ding, X.; Wan, C.; Liu, N.; Wang,
Y.; Yu, Z. Sulfonium-driven neoantigen-released DNA nanodevice as a precise vaccine
for tumor immunotherapy and prevention. ACS nano 2022, 16 (11), 19509-19522.
(99) Dang, Y.; Guan, J. Nanoparticle-based drug delivery systems for cancer therapy.
Smart Materials in Medicine 2020, 1, 10-19.
(100) Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of
nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology
2024, 5, 109-122.
(101) Gavas, S.; Quazi, S.; Karpiński, T. M. Nanoparticles for cancer therapy: current
progress and challenges. Nanoscale research letters 2021, 16 (1), 173.
(102) Qu, C.; Yuan, H.; Tian, M.; Zhang, X.; Xia, P.; Shi, G.; Hou, R.; Li, J.; Jiang, H.;
Yang, Z. Precise Photodynamic Therapy by Midkine Nanobody-Engineered
Nanoparticles Remodels the Microenvironment of Pancreatic Ductal Adenocarcinoma
167
and Potentiates the Immunotherapy. ACS nano 2024.
(103) Wang, F.; Qin, X.; Meng, Y.; Guo, Z.; Yang, L.; Ming, Y. Hydrothermal synthesis
and characterization of α-Fe2O3 nanoparticles. Materials science in semiconductor
processing 2013, 16 (3), 802-806.
(104) Jayanthi, S. A.; Nathan, D. M. G. T.; Jayashainy, J.; Sagayaraj, P. A novel
hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous
magnetic nanoparticles. Materials Chemistry and Physics 2015, 162, 316-325.
(105) Xu, G.; Li, L.; Shen, Z.; Tao, Z.; Zhang, Y.; Tian, H.; Wei, X.; Shen, G.; Han, G.
Magnetite Fe3O4 nanoparticles and hematite α-Fe2O3 uniform oblique hexagonal
microdisks, drum-like particles and spindles and their magnetic properties. Journal of
Alloys and Compounds 2015, 629, 36-42.
(106) Pourmadadi, M.; Rahmani, E.; Shamsabadipour, A.; Mahtabian, S.; Ahmadi, M.;
Rahdar, A.; Díez-Pascual, A. M. Role of iron oxide (Fe2O3) nanocomposites in
advanced biomedical applications: a state-of-the-art review. Nanomaterials 2022, 12
(21), 3873.
(107) Koo, S.; Park, O. K.; Kim, J.; Han, S. I.; Yoo, T. Y.; Lee, N.; Kim, Y. G.; Kim, H.;
Lim, C.; Bae, J.-S. Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles:
tumor microenvironment-mediated synergistic Fenton reaction. ACS nano 2022, 16 (2),
2535-2545.
(108) Pawar, S. A.; Chand, A. N.; Kumar, A. V. Polydopamine: an amine oxidase
mimicking sustainable catalyst for the synthesis of nitrogen heterocycles under aqueous
conditions. ACS sustainable chemistry & engineering 2019, 7 (9), 8274-8286.
(109) Wang, N.; Yang, Y.; Wang, X.; Tian, X.; Qin, W.; Wang, X.; Liang, J.; Zhang, H.;
Leng, X. Polydopamine as the antigen delivery nanocarrier for enhanced immune
response in tumor immunotherapy. ACS Biomaterials Science & Engineering 2019, 5
(5), 2330-2342.
(110) Yalamandala, B. N.; Huynh, T. M. H.; Chiang, M. R.; Weng, W. H.; Chang, C.
W.; Chiang, W. H.; Hu, S. H. Programmed Catalytic Therapy and Antigen Capture‐
Mediated Dendritic Cells Harnessing Cancer Immunotherapies by In Situ‐Forming
Adhesive Nanoreservoirs. Advanced Functional Materials 2023, 33 (15), 2210644.
(111) Li, Y.; Luo, Y.; Hou, L.; Huang, Z.; Wang, Y.; Zhou, S. Antigen‐Capturing
Dendritic‐Cell–Targeting Nanoparticles for Enhanced Tumor Immunotherapy Based
on Photothermal ‐ Therapy – Induced In Situ Vaccination. Advanced Healthcare
Materials 2023, 12 (22), 2202871.
(112) Gao, H.; Cao, Z.; Liu, H.; Chen, L.; Bai, Y.; Wu, Q.; Yu, X.; Wei, W.; Wang, M.
Multifunctional nanomedicines-enabled chemodynamic-synergized multimodal tumor
therapy via Fenton and Fenton-like reactions. Theranostics 2023, 13 (6), 1974.
(113) Ji, M.; Liu, H.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. Recent advances in
168
nanoscale metal–organic frameworks for cancer chemodynamic therapy. Nanoscale
2023, 15 (20), 8948-8971.
(114) Di, X.; Pei, Z.; Pei, Y.; James, T. D. Tumor microenvironment-oriented MOFs for
chemodynamic therapy. Coordination Chemistry Reviews 2023, 484, 215098.
(115) Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of
glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and
chemotherapy. Biomaterials 2021, 277, 121110.
(116) Liu, S.; Sun, Y.; Ye, J.; Li, C.; Wang, Q.; Liu, M.; Cui, Y.; Wang, C.; Jin, G.; Fu,
Y. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate
Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS nano
2024, 18 (2), 1516-1530.
(117) Sobańska, Z.; Roszak, J.; Kowalczyk, K.; Stępnik, M. Applications and biological
activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo
models. Nanomaterials 2021, 11 (5), 1084.
(118) Lin, L. S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.;
Tang, W. Simultaneous Fenton‐like ion delivery and glutathione depletion by MnO2‐
based nanoagent to enhance chemodynamic therapy. Angewandte Chemie 2018, 130
(18), 4996-5000.
(119) Li, X.; Zhang, X.; Zhang, W.; Li, L.; Gao, W.; Zhang, X.; Gao, D. Biocatalysis
of MnO2-mediated nanosystem for enhanced multimodal therapy and real-time
tracking. ACS Sustainable Chemistry & Engineering 2020, 8 (35), 13206-13214.
(120) Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.;
Yang, P. Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with
up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and
catalytic therapy. ACS nano 2022, 16 (11), 18143-18156.
(121) Yang, Y.; Liu, X.; Lv, Y.; Herng, T. S.; Xu, X.; Xia, W.; Zhang, T.; Fang, J.; Xiao,
W.; Ding, J. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4
nanodisc. Advanced Functional Materials 2015, 25 (5), 812-820.
(122) Fan, M.; Jia, L.; Pang, M.; Yang, X.; Yang, Y.; Kamel Elyzayati, S.; Liao, Y.;
Wang, H.; Zhu, Y.; Wang, Q. Injectable adhesive hydrogel as photothermal‐derived
antigen reservoir for enhanced anti‐tumor immunity. Advanced Functional Materials
2021, 31 (20), 2010587.
(123) Fu, R.-H.; Hran, H.-J.; Chu, C.-L.; Huang, C.-M.; Liu, S.-P.; Wang, Y.-C.; Lin,
Y.-H.; Shyu, W.-C.; Lin, S.-Z. Lipopolysaccharide-stimulated activation of murine DC2.
4 cells is attenuated by n-butylidenephthalide through suppression of the NF-κB
pathway. Biotechnology letters 2011, 33, 903-910.
(124) Chen, L.; Yang, X.; Chen, J.; Liu, J.; Wu, H.; Zhan, H.; Liang, C.; Wu, M.
Continuous shape-and spectroscopy-tuning of hematite nanocrystals. Inorganic
169
chemistry 2010, 49 (18), 8411-8420.
(125) Andersen, A.; Krogsgaard, M.; Birkedal, H. Mussel-inspired self-healing doublecross-linked hydrogels by controlled combination of metal coordination and covalent
cross-linking. Biomacromolecules 2017, 19 (5), 1402-1409.
(126) Zhang, X.; Guo, X.; Wu, Y.; Gao, J. Locally injectable hydrogels for tumor
immunotherapy. Gels 2021, 7 (4), 224.
(127) Menichetti, A.; Mordini, D.; Montalti, M. Polydopamine Nanosystems in Drug
Delivery: Effect of Size, Morphology, and Surface Charge. Nanomaterials 2024, 14 (3),
303.
(128) Zhou, Z.; Zhang, Q.; Sun, J.; He, B.; Guo, J.; Li, Q.; Li, C.; Xie, L.; Yao, Y.
Metal–organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on
carbon nanotube fiber as anodes for high-performance wearable asymmetric
supercapacitors. ACS nano 2018, 12 (9), 9333-9341.
(129) Tahir, D.; Ilyas, S.; Rahmat, R.; Heryanto, H.; Fahri, A. N.; Rahmi, M. H.;
Abdullah, B.; Hong, C. C.; Kang, H. J. Enhanced visible-light absorption of Fe2O3
covered by activated carbon for multifunctional purposes: Tuning the structural,
electronic, optical, and magnetic properties. Acs Omega 2021, 6 (42), 28334-28346.
(130) Huang, Y.; Li, Y.; Huang, R.; Yao, J. Ternary Fe2O3/Fe3O4/FeCO3 composite as
a high-performance anode material for lithium-ion batteries. The Journal of Physical
Chemistry C 2019, 123 (20), 12614-12622.
(131) Qi, X.; Zhang, H.-B.; Xu, J.; Wu, X.; Yang, D.; Qu, J.; Yu, Z.-Z. Highly efficient
high-pressure homogenization approach for scalable production of high-quality
graphene sheets and sandwich-structured α-Fe2O3/graphene hybrids for highperformance lithium-ion batteries. ACS Applied Materials & Interfaces 2017, 9 (12),
11025-11034.
(132) Li, J.; Pei, Q.; Wang, R.; Zhou, Y.; Zhang, Z.; Cao, Q.; Wang, D.; Mi, W.; Du, Y.
Enhanced photocatalytic performance through magnetic field boosting carrier transport.
ACS nano 2018, 12 (4), 3351-3359.
(133) Wu, X.; Duan, Y.; Meng, J.; Geng, X.; Shen, A.; Hu, J. Experimental study on
the mercury removal of a H2S-modified Fe2O3 adsorbent. Industrial & Engineering
Chemistry Research 2021, 60 (48), 17429-17438.
(134) Pradhan, G. K.; Parida, K. Fabrication, growth mechanism, and characterization
of α-Fe2O3 nanorods. ACS applied materials & interfaces 2011, 3 (2), 317-323.
(135) Jin, R.; Wang, Q.; Li, H.; Ma, Y.; Sun, Y.; Li, G. Polypyrrole layer coated
MnOx/Fe2O3 nanotubes with enhanced electrochemical performance for lithium ion
batteries. Applied Surface Science 2017, 403, 62-70.
(136) Tran, N. T.; Flanagan, D. P.; Orlicki, J. A.; Lenhart, J. L.; Proctor, K. L.; Knorr Jr,
D. B. Polydopamine and polydopamine–silane hybrid surface treatments in structural
170
adhesive applications. Langmuir 2018, 34 (4), 1274-1286.
(137) Alalwan, H. A.; Mason, S. E.; Grassian, V. H.; Cwiertny, D. M. α-Fe2O3
nanoparticles as oxygen carriers for chemical looping combustion: an integrated
materials characterization approach to understanding oxygen carrier performance,
reduction mechanism, and particle size effects. Energy & fuels 2018, 32 (7), 7959-7970.
(138) Garcia-Lekue, A.; González-Moreno, R.; Garcia-Gil, S.; Pickup, D.; Floreano, L.;
Verdini, A.; Cossaro, A.; Martín-Gago, J.; Arnau, A.; Rogero, C. Coordinated Hbonding between porphyrins on metal surfaces. The Journal of Physical Chemistry C
2012, 116 (29), 15378-15384.
(139) Luo, Y.; Huang, Y.; Gong, L.; Wang, M.; Xia, Z.; Hu, L. Accelerating the
Phosphatase-like Activity of Uio-66-NH2 by Catalytically Inactive Metal Ions and Its
Application for Improved Fluorescence Detection of Cardiac Troponin I. Analytical
Chemistry 2024.
(140) Liu, X.; Yi, X.; Zhang, J.; Zhao, X.; Liu, S.; Wang, T.; Cui, S. Synthetic strategy
for MnO2 nanoparticle/carbon aerogel heterostructures for improved supercapacitor
performance. ACS Applied Nano Materials 2023, 6 (15), 14127-14135.
(141) Wang, J.; Guo, X.; Cui, R.; Huang, H.; Liu, B.; Li, Y.; Wang, D.; Zhao, D.; Dong,
J.; Li, S. MnO2/porous carbon nanotube/MnO2 nanocomposites for high-performance
supercapacitor. ACS Applied Nano Materials 2020, 3 (11), 11152-11159.
(142) Wu, Y.; Guo, Q.; Liu, H.; Wei, S.; Wang, L. Effect of Fe doping on the surface
properties of δ-MnO2 nanomaterials and its decomposition of formaldehyde at room
temperature. Journal of Environmental Chemical Engineering 2022, 10 (5), 108277.
(143) Song, L.; Duan, Y.; Cui, Y.; Huang, Z. Fe-doped MnO2 nanostructures for
attenuation–impedance balance-boosted microwave absorption. ACS Applied Nano
Materials 2022, 5 (2), 2738-2747.
(144) Guo, X.; Wang, T.; Zheng, T. X.; Xu, C.; Zhang, J.; Zhang, Y. X.; Liu, X. Y.;
Dong, F. Quasi-parallel arrays with a 2D-on-2D structure for electrochemical
supercapacitors. Journal of materials chemistry A 2018, 6 (48), 24717-24727.
(145) Jabeen, N.; Xia, Q.; Savilov, S. V.; Aldoshin, S. M.; Yu, Y.; Xia, H. Enhanced
pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS applied
materials & interfaces 2016, 8 (49), 33732-33740.
(146) Selvakumar, K.; Senthil Kumar, S. M.; Thangamuthu, R.; Ganesan, K.; Murugan,
P.; Rajput, P.; Jha, S. N.; Bhattacharyya, D. Physiochemical investigation of shapedesigned MnO2 nanostructures and their influence on oxygen reduction reaction
activity in alkaline solution. The Journal of Physical Chemistry C 2015, 119 (12), 6604-
6618.
(147) Qin, W.; Yang, C.; Yi, R.; Gao, G. Hydrothermal synthesis and characterization
of single-crystalline α-Fe2O3nanocubes. Journal of Nanomaterials 2011, 2011, 1-5.
171
(148) Ghasemi, E.; Mirhabibi, A.; Edrissi, M.; Aghababazadeh, R.; Brydson, R. Study
on the magnetorheological properties of Maghemite-Kerosene ferrofluid. Journal of
nanoscience and nanotechnology 2009, 9 (7), 4273-4278.
(149) Sun, P.; He, X.; Wang, W.; Ma, J.; Sun, Y.; Lu, G. Template-free synthesis of
monodisperse α-Fe 2 O 3 porous ellipsoids and their application to gas sensors.
CrystEngComm 2012, 14 (6), 2229-2234.
(150) Zheng, D.; Sun, C.; Pan, W.; Guo, G.; Zheng, Y.; Liu, C.; Zhu, J. Nanostructured
Fe2O3@ C negative electrodes for stable asymmetric supercapacitors with highperformance. Energy & Fuels 2021, 35 (20), 16915-16924.
(151) Ikram, M.; Shahzadi, A.; Haider, A.; Imran, M.; Hayat, S.; Haider, J.; Ul-Hamid,
A.; Rasool, F.; Nabgan, W.; Mustajab, M. Toward efficient bactericidal and dye
degradation performance of strontium-and starch-doped Fe2O3 nanostructures: in
silico molecular docking studies. ACS omega 2023, 8 (8), 8066-8077.
(152) Jian, Y.; Yu, T.; Jiang, Z.; Yu, Y.; Douthwaite, M.; Liu, J.; Albilali, R.; He, C. Indepth understanding of the morphology effect of α-Fe2O3 on catalytic ethane
destruction. ACS applied materials & interfaces 2019, 11 (12), 11369-11383.
(153) Yao, J.; Yang, Y.; Li, Y.; Jiang, J.; Xiao, S.; Yang, J. Interconnected α-Fe2O3
nanoparticles prepared from leaching liquor of tin ore tailings as anode materials for
lithium-ion batteries. Journal of Alloys and Compounds 2021, 855, 157288.
(154) Duan, J.; Wen, H.; Zong, S.; Li, T.; Lv, H.; Liu, L. Soft/hard controllable
conversion galactomannan ionic conductive hydrogel as a flexible sensor. ACS Applied
Electronic Materials 2021, 3 (11), 5000-5014.
(155) Naranjo, D.; Paulo-Mirasol, S.; Lanzalaco, S.; Quan, H.; Armelin, E.; GarcíaTorres, J.; Torras, J. Exploring the Effects and Interactions of Conducting Polymers in
the Volume Phase Transition of Thermosensitive Conducting Hydrogels. Chemistry of
Materials 2024, 36 (9), 4688-4702.
(156) Mondal, J.; Srivastava, S. K. δ-MnO2 nanoflowers and their reduced graphene
oxide nanocomposites for electromagnetic interference shielding. ACS Applied Nano
Materials 2020, 3 (11), 11048-11059.
(157) Ahmed, Z.; Gooding, E. A.; Pimenov, K. V.; Wang, L.; Asher, S. A. UV resonance
Raman determination of molecular mechanism of poly (N-isopropylacrylamide)
volume phase transition. The Journal of Physical Chemistry B 2009, 113 (13), 4248-
4256.
(158) Xie, Z.; Liang, S.; Cai, X.; Ding, B.; Huang, S.; Hou, Z.; Ma, P. a.; Cheng, Z.;
Lin, J. O2-Cu/ZIF-8@ Ce6/ZIF-8@ F127 composite as a tumor microenvironmentresponsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS
applied materials & interfaces 2019, 11 (35), 31671-31680.
(159) Wu, H.; Wei, M.; Xu, Y.; Li, Y.; Zhai, X.; Su, P.; Ma, Q.; Zhang, H. PDA-based
172
drug delivery nanosystems: a potential approach for glioma treatment. International
journal of nanomedicine 2022, 17, 3751.
(160) Yang, D.; Zhao, Y.; Guo, H.; Li, Y.; Tewary, P.; Xing, G.; Hou, W.; Oppenheim,
J. J.; Zhang, N. [Gd@ C82 (OH) 22] n nanoparticles induce dendritic cell maturation
and activate Th1 immune responses. ACS nano 2010, 4 (2), 1178-1186.
(161) Cao, Z.; Yang, X.; Yang, W.; Chen, F.; Jiang, W.; Zhan, S.; Jiang, F.; Li, J.; Ye,
C.; Lang, L. Modulation of Dendritic Cell Function via Nanoparticle-Induced Cytosolic
Calcium Changes. ACS nano 2024.
(162) Xue, Q.; Yan, Y.; Zhang, R.; Xiong, H. Regulation of iNOS on immune cells and
its role in diseases. International journal of molecular sciences 2018, 19 (12), 3805.
(163) De Trez, C.; Magez, S.; Akira, S.; Ryffel, B.; Carlier, Y.; Muraille, E. iNOSproducing inflammatory dendritic cells constitute the major infected cell type during
the chronic Leishmania major infection phase of C57BL/6 resistant mice. PLoS
pathogens 2009, 5 (6), e1000494.
(164) Deng, G.; Sun, Z.; Li, S.; Peng, X.; Li, W.; Zhou, L.; Ma, Y.; Gong, P.; Cai, L.
Cell-membrane immunotherapy based on natural killer cell membrane coated
nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS
nano 2018, 12 (12), 12096-12108.
(165) Zhu, Y.; Zhang, L.; Lu, Q.; Gao, Y.; Cai, Y.; Sui, A.; Su, T.; Shen, X.; Xie, B.
Identification of different macrophage subpopulations with distinct activities in a
mouse model of oxygen-induced retinopathy. International Journal of Molecular
Medicine 2017, 40 (2), 281-292.
(166) Meng, T.; Wang, H.-J.; Huang, Y.-R.; Qin, J.-L.; Jiang, Y.; Zhou, C.-Y.; Zhong,
J.-P. Fenton-like 5, 7-dibromo-2-methyl-8-hydroxyquinoline Mn2+ complex acting as
a probe for mitochondrial imaging and chemodynamic therapy. Inorganic Chemistry
Communications 2023, 156, 111198.
(167) Zhang, Z.; Lu, M.; Qin, Y.; Gao, W.; Tao, L.; Su, W.; Zhong, J. Neoantigen: A
new breakthrough in tumor immunotherapy. Frontiers in Immunology 2021, 12, 672356.
(168) Biswas, N.; Chakrabarti, S.; Padul, V.; Jones, L. D.; Ashili, S. Designing
neoantigen cancer vaccines, trials, and outcomes. Frontiers in immunology 2023, 14,
1105420.
(169) Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and insights into the cellular
internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta
Pharmaceutica Sinica B 2021, 11 (4), 903-924.
(170) Zhou, J.; Xu, Y.; Wang, G.; Mei, T.; Yang, H.; Liu, Y. The TLR7/8 agonist R848
optimizes host and tumor immunity to improve therapeutic efficacy in murine lung
cancer. International Journal of Oncology 2022, 61 (1), 1-11.
(此全文20260723後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 應用生物可降解之奈米級金屬有機框架材料為癌症免疫促進劑兼具自噬抑制與化學動力療效
2. 探索共價有機框架奈米粒子的形狀效應用於大腸癌肺轉移的免疫治療中的抗原捕捉
3. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
4. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
5. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
6. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
7. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
8. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
9. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
10. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
11. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
12. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
13. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
14. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
15. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
 
* *