|
第一章 [1-1] International Roadmap for Devices and Systems (IRDS™) 2021 Edition: https://irds.ieee.org/editions/2021 [1-2] Waldrop, M. Mitchell. "More than Moore." Nature, vol. 530, no. 7589, 11 Feb. 2016, pp. 144+. Gale OneFile: Health and Medicine, link.gale.com/apps/doc/A443132364/HRCA?u=anon~3a6b45d&sid=googleScholar&xid=e0ea0828. Accessed 14 May 2024. [1-3] J. von Neumann, "First draft of a report on the EDVAC," in IEEE Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, 1993, doi: 10.1109/85.238389. [1-4] https://www.eettaiwan.com/20171024nt01-monolithic-3d-shows-promise-challenges/ [1-5] C. -C. Yang et al., "Location-controlled-grain Technique for Monolithic 3D BEOL FinFET Circuits," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 11.3.1-11.3.4, doi: 10.1109/IEDM.2018.8614708. [1-6] H. -T. Chung et al., "Effect of Crystallinity on the Electrical Characteristics of Poly-Si Tunneling FETs via Green Nanosecond Laser Crystallization," in IEEE Electron Device Letters, vol. 42, no. 2, pp. 164-167, Feb. 2021, doi: 10.1109/LED.2021.3049329. [1-7] C. -C. Yang et al., "High Gamma Value 3D-Stackable HK/MG-Stacked Tri-Gate Nanowire Poly-Si FETs With Embedded Source/Drain and Back Gate Using Low Thermal Budget Green Nanosecond Laser Crystallization Technology," in IEEE Electron Device Letters, vol. 37, no. 5, pp. 533-536, May 2016, doi: 10.1109/LED.2016.2537381. [1-8] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, doi: 10.1051/epjap:2004206. [1-9] M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017, doi: 10.1039/c7tc01200d. [1-10] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012, doi: 10.1021/nl302049k. [1-11] N. Gong and T. -P. Ma, "A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation," in IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, Jan. 2018, doi: 10.1109/LED.2017.2776263. [1-12] Y. Peng et al., "HfO2-ZrO2 Superlattice Ferroelectric Capacitor With Improved Endurance Performance and Higher Fatigue Recovery Capability," in IEEE Electron Device Letters, vol. 43, no. 2, pp. 216-219, Feb. 2022, doi: 10.1109/LED.2021.3135961. [1-13] Zahoor, F., Azni Zulkifli, T.Z. & Khanday, F.A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res Lett 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9 [1-14] H. . -S. P. Wong et al., "Phase Change Memory," in Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, Dec. 2010, doi: 10.1109/JPROC.2010.2070050. [1-15] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, "Progress and outlook for MRAM technology," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2814-2819, Sept. 1999, doi: 10.1109/20.800991. [1-16] T. Mikolajick, S. Slesazeck, M.-H. Park, and U. Schroeder, “Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors,” MRS Bulletin, vol. 43, no. 5, pp. 340-346, 2018, doi:10.1557/mrs.2018.92. 第二章 [2-1] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters, vol. 8, pp. 405-410, 2008, doi:10.1021/nl071804g. [2-2] T. Ali et al., "A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM19573.2019.8993642. [2-3] A. Es-Sakhi and M. H. Chowdhury, "Analytical model to estimate the subthreshold swing of SOI FinFET," 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, United Arab Emirates, 2013, pp. 52-55, doi: 10.1109/ICECS.2013.6815343. [2-4] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, 2012. [2-5] S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. 2016. [2-6] Hee-Wook You, Won-Ju Cho; Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications. Appl. Phys. Lett. 1 March 2010; 96 (9): 093506. https://doi.org/10.1063/1.3337103 [2-7] Chang-Hyun Lee, Sung-Hoi Hur, You-Cheol Shin, Jeong-Hyuk Choi, Dong-Gun Park, Kinam Kim; Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory. Appl. Phys. Lett. 11 April 2005; 86 (15): 152908. https://doi.org/10.1063/1.1897431 [2-8] K. Ni et al., "Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance," in IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, June 2018, doi: 10.1109/TED.2018.2829122. [2-9] S. Zhao et al., "Experimental Extraction and Simulation of Charge Trapping During Endurance of FeFET With TiN/HfZrO/SiO2/Si (MFIS) Gate Structure," in IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1561-1567, March 2022, doi: 10.1109/TED.2021.3139285. [2-10] E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlösser, R. Boschke, R. van Bentum, and M. Trentzsch, “Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories,” 2014 IEEE International Reliability Physics Symposium, 2014, pp. 2E.5.1-2E.5.5, doi: 10.1109/IRPS.2014.6860603. [2-11] C. -Y. Chan, K. -Y. Chen, H. -K. Peng and Y. -H. Wu, “FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-Pulse Cycling by Interface Engineering using High-k AlON,” 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265103. [2-12] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, “Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer,” Applied Physics Letters, vol. 118, issue 10, pp. 103503, 2021, doi: 10.1063/5.0036824 [2-13] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, “High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty,” in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769-3774, Sept. 2018, doi: 10.1109/TED.2018.2856818. [2-14] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer , T. Mikolajick ,and S. Slesazeck, “Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs,” in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, Sept. 2020, doi: 10.1109/LED.2020.3007220. 第三章 [3-1] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, and T. Mikolajick, “Stabilizing the ferroelectric phase in doped hafnium oxide,” Journal of Applied Physics, 118, 072006 (2015), doi: 10.1063/1.4927805 第四章 [4-1] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. et al. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z . [4-2] Yang, R. In-memory computing with ferroelectrics. Nat Electron 3, 237-238 (2000). http://doi.org/10.1038/s41928-020-0411-2 [4-3] J. Backus, “Can programming be liberated from the von Neumann style? a functional style and its algebra of programs,” Communications of ACM, Volume 21 Issue 8, 1978, pp 613–641, doi: 10.1145/359576.359579. [4-4] S. -C. Yan et al., "High Speed and Large Memory Window Ferroelectric HfZrO₂ FinFET for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 9, pp. 1307-1310, Sept. 2021, doi: 10.1109/LED.2021.3097777. [4-5] H. Mulaosmanovic et al., "Novel ferroelectric FET based synapse for neuromorphic systems," 2017 Symposium on VLSI Technology, Kyoto, Japan, 2017, pp. T176-T177, doi: 10.23919/VLSIT.2017.7998165. 第五章 [5-1] D. Nagy, G. Indalecio, A. J. GarcíA-Loureiro, M. A. Elmessary, K. Kalna and N. Seoane, "FinFET Versus Gate-All-Around Nanowire FET: Performance, Scaling, and Variability," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 332-340, 2018, doi: 10.1109/JEDS.2018.2804383. [5-2] Beom Yong Kim, Baek Su Kim, Seung Dam Hyun, Ho Hyun Kim, Yong Bin Lee, Hyun Woo Park, Min Hyuk Park, Cheol Seong Hwang; Study of ferroelectric characteristics of Hf0.5Zr0.5O2 thin films grown on sputtered or atomic-layer-deposited TiN bottom electrodes. Appl. Phys. Lett. 13 July 2020; 117 (2): 022902. https://doi.org/10.1063/5.0011663 [5-3] Wang, C. I., Wang, C. Y., Chang, T. J., Jiang, Y. S., Shyue, J. J., Lin, H. C., & Chen, M. J. (2021). Atomic layer deposited TiN capping layer for sub-10 nm ferroelectric Hf0. 5Zr0. 5O2 with large remnant polarization and low thermal budget. Applied Surface Science, 570, 151152. [5-4] K. Endo et al., "Low temperature microwave annealed FinFETs with less Vth variability," 2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 2016, pp. 1-2, doi: 10.1109/VLSI-TSA.2016.7480527.
|