帳號:guest(3.144.99.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘琬淇
作者(外文):Pan, Wan-Chi
論文名稱(中文):導電多孔水膠介導無線磁電驅動靶向 miR6236 下調之基因療法用於創傷性腦損傷後神經再生
論文名稱(外文):Wireless magnetoelectric-driven Gene Therapy Targeting miR6236 Downregulation-mediated by Conductive Porous Hydrogel for Nerve Regeneration after Traumatic Brain Injury
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):黃兆祺
何奕儒
張建文
口試委員(外文):Huang, Chao-Chi
Ho, Yi-Ju
Chang, Chien-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:111010502
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:119
中文關鍵詞:腦創傷微球水凝膠二維導電材料核酸質體高頻磁電刺激
外文關鍵詞:traumatic brain injurymicrobead-based hydrogel,conductive MXenemiR6236 spongehigh-frequency magnetic field
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
創傷性腦損傷 (TBI) 是一項重大的全球公共衛生挑戰,每年影響數百萬人。 可注射的微球水凝膠已成為再生醫學中很有前途的細胞支持支架,可有效減輕腦萎縮和神經元變性。在這裡,我們提出了一種將GelMA微球 (Microbead, MB) 與二維導電材料MXene (MX)、聚乙烯亞胺 (PEI) 和miR6236 sponge (msp)核酸藥物結合的新型配方,設計出了msp/PEI-MX@MB水凝膠 (mPMMH ),探索其在TBI修復中的功能。研究發現msp/PEI-MX@MB水凝膠可以有效地增強細胞浸潤、神經元再生和神經元生長的基因轉染。此外,高頻磁場 (HFMF) 的應用可刺激神經元再生,透過導電 MX 塗層響應外部電刺激,miR6236 sponge核酸藥物能更容易進入細胞質中以協同促進神經元再生。一旦miR6236 sponge被引入細胞骨架,會抑制住miR6236 序列的增生累積。miR6236序列是由RNAseq得知會在早期受損神經元中累積並抑制神經細胞再生的一條序列,透過miR6236 sponge將該序列耗盡,將有助於神經突伸長和再生。此外,當mPMMH植入腦傷部位時,證明了對TBI的有效修復能力。與其他組別相比,mPMMH + HFMF 組表現出顯著的神經恢復和更高的大腦完整性。這種多功能水凝膠為腦外傷患者的傷口填充和基因療法提供了一個有前景的治療平台,有效滿足了該領域的關鍵需求。
Traumatic brain injury (TBI) poses a significant global public health challenge, impacting millions annually. Injectable microbead-based hydrogels have emerged as promising cell healing scaffolds in regenerative medicine, effectively mitigating brain atrophy and neuron degeneration. Here, we present a novel formulation of GelMA microbeads (MBs) incorporated with MXene (MX), polyethylenimine (PEI), and miR6236 sponge (msp) to create msp/PEI-MX@MB hydrogel (mPMMH) as a conductive gene-carrier microbead hydrogel (CGH), exploring its function in TBI repair. It is found that msp/PEI-MX@MB hydrogel could effectively enhance cell infiltration, neuron regeneration, and gene transfection for neuron growth. Furthermore, the application of a high-frequency magnetic field (HFMF) stimulates neuron regeneration, synergistically promoted by the incorporation of the miR6236 sponge plasmid via conductive MX-coating. Once introduced into the cytoskeleton, the miR6236, known by RNAseq to accumulate in early damaged neurons and inhibit regeneration, will be depleted, thus aiding in neurite elongation and regrowth. Additionally, when the mPMMH is implanted into the injured brain trauma site, effective repair capability for TBI was demonstrated. The mPMMH + HFMF group shows remarkable nerve recovery and higher brain integrity in comparison to the other groups. This multifunctional hydrogel offers a promising platform for wound filling and gene therapy in brain trauma injury patients, effectively addressing critical requirements in the field.
中文摘要 II
Abstract III
致謝 IV
Table of contents V
List of Figures VIII
List of Tables XVII
Chapter 1 Introduction 1
Chapter 2 Literature review and theory 4
2.1 Traumatic brain injury 4
2.1.1 Immune kinetics of the brain injury 6
2.1.2 Glial dysfunction in post-traumatic brain injury 8
2.1.3 Risk of neuropathological disorder 11
2.2 Injectable material — Hydrogel 13
2.2.1 Gelatin methacryloyl (GelMA) for advanced tissue therapy 15
2.2.2 The fabrication techniques of microgels 19
2.2.3 Droplet based microfluidics device 20
2.3 The wireless neural stimulation strategies 23
2.3.1 Electrical stimulation and neuron modulation 24
2.3.2 Piezoelectric nanoparticles for neural regeneration 27
2.3.3 Roles of MXene hydrogel in bio application 28
2.3.4 Conductive MXene hydrogel promotes neural development 30
2.4 Nucleic acid drugs for tissue regeneration 31
2.4.1 DNA hydrogel application for brain disease treatment 33
2.4.2 Specific miR6236 sponge for neurogenesis by depleting microRNA miR6236 34
Chapter 3 Experimental Section 37
3.1 Materials 37
3.2 Apparatus 39
3.3 Method 41
3.3.1 Microfluidics chip design 41
3.3.2 Synthesis of GelMA 41
3.3.3 Fabrication of GelMA microbeads 42
3.3.4 Porosity of microbead hydrogel 43
3.3.5 Degradation of GelMA building blocks 43
3.3.6 Rheological property of MBH 43
3.3.7 Synthesis process of MXene (MX) 44
3.3.8 Synthesis of polyethylenimine-MXene (PEI-MX) 44
3.3.9 Preparation of conductive microbead hydrogel 45
3.3.10 Electrical conductivity test 45
3.3.11 In vitro cell line culture 45
3.3.12 In vitro adhesion assay 46
3.3.13 cell viability assay 47
3.3.14 Lysosomal escape assay 48
3.3.15 In vitro transfection 48
3.3.16 Embryonic neuron stem cells (NSC) extraction 49
3.3.17 NSC differentiation analysis 49
3.3.18 Gene functional assay 50
3.3.19 Calcium flux assay 51
3.3.20 In vivo experiment 52
3.3.21 In vivo transfection 52
3.3.22 Brain sections immunofluorescence (IHC) staining 53
3.3.23 Animal behavior test 54
3.3.24 Statistical analysis 54
Chapter 4 Results and Discussion 56
4.1 Synthesis and characterization of CGH 56
4.1.1 Gelatin was successfully modified with methacrylate 56
4.1.2 Microfluidic chip design for droplets fabrication 56
4.1.3 Preparation and Characterization of nanocomposites 57
4.1.4 PEI-coated nanoparticles contribute to DNA binding ability 63
4.1.5 Characterization of conductive microbeads 65
4.1.6 Rheological property and self-healing behaviors of hydrogel 69
4.2 In vitro cell line experiments 70
4.2.1 Low-cytotoxicity nanoparticles for further nanoengineered GelMA-hydrogel modification 71
4.2.2 Microbead scaffolds have an excellent adhesion ability to facilitate cell proliferation 72
4.2.3 Gene-carrier cargo successfully escape from lysosome into cytoplasm 73
4.2.4 miR6236 sponge can easily transfect into cytoplasm by gene-carrier cargo 75
4.3 In vitro cellular study — primary neural stem cell 76
4.3.1 Microbeads allow neurites to grow adherently around the bio-scaffolds 76
4.3.2 pDNAs are delivered into NSC and show the different gene expression level 77
4.3.3 Introducing pDNA under HFMF treatment demonstrates enhanced neuron differentiation and neurite elongation 80
4.3.4 miR6236 depletion enhances neuronal regeneration on inhibitory substrate 81
4.3.5 miR6236 depletion evokes a moderate increase in intracellular calcium for inducing neural regenerative pathway 83
4.4 In vivo study — TBI and treatments 85
4.4.1 pDNA transfected around the TBI cavity by in situ injection of CGH and showed the better efficiency under HFMF 86
4.4.2 CGH can enhance in vivo neuron regeneration and slightly decrease the neuroinflammation level and facilitate vascular formation 87
4.4.3 miR6236 depletion has increased newborn neurons around the injury site through whole brain imaging 97
4.4.4 mPMMH with HFMF has the best motor coordination in neurological functional recovery 101
4.4.5 Biodegradable and no detectable toxicity abilities in surrounding visceral organs due to CGH treatment 102
Chapter 5 Conclusion 105
Chapter 6 Reference 106
(1) Ladak, A. A.; Enam, S. A.; Ibrahim, M. T. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg 2019, 131, 126-132. DOI: 10.1016/j.wneu.2019.07.039 From NLM Medline.
(2) Orr, T. J.; Lesha, E.; Kramer, A. H.; Cecia, A.; Dugan, J. E.; Schwartz, B.; Einhaus, S. L. Traumatic Brain Injury: A Comprehensive Review of Biomechanics and Molecular Pathophysiology. World Neurosurg 2024, 185, 74-88. DOI: 10.1016/j.wneu.2024.01.084 From NLM Publisher.
(3) Williams, W. H.; Chitsabesan, P.; Fazel, S.; McMillan, T.; Hughes, N.; Parsonage, M.; Tonks, J. Traumatic brain injury: a potential cause of violent crime? Lancet Psychiatry 2018, 5 (10), 836-844. DOI: 10.1016/S2215-0366(18)30062-2 From NLM Medline.
(4) McCrea, M. A.; Giacino, J. T.; Barber, J.; Temkin, N. R.; Nelson, L. D.; Levin, H. S.; Dikmen, S.; Stein, M.; Bodien, Y. G.; Boase, K.; et al. Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurol 2021, 78 (8), 982-992. DOI: 10.1001/jamaneurol.2021.2043 From NLM Medline.
(5) Sigurdardottir, S.; Andelic, N.; Roe, C.; Schanke, A. K. Trajectory of 10-Year Neurocognitive Functioning After Moderate-Severe Traumatic Brain Injury: Early Associations and Clinical Application. J Int Neuropsychol Soc 2020, 26 (7), 654-667. DOI: 10.1017/S1355617720000193 From NLM Medline.
(6) Crupi, R.; Cordaro, M.; Cuzzocrea, S.; Impellizzeri, D. Management of Traumatic Brain Injury: From Present to Future. Antioxidants (Basel) 2020, 9 (4). DOI: 10.3390/antiox9040297 From NLM PubMed-not-MEDLINE.
(7) Chan, T. L. H.; Woldeamanuel, Y. W. Exploring naturally occurring clinical subgroups of post-traumatic headache. J Headache Pain 2020, 21 (1), 12. DOI: 10.1186/s10194-020-1080-2 From NLM Medline.
(8) Zibara, K.; Ballout, N.; Mondello, S.; Karnib, N.; Ramadan, N.; Omais, S.; Nabbouh, A.; Caliz, D.; Clavijo, A.; Hu, Z.; et al. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2019, 145 (Pt B), 177-198. DOI: 10.1016/j.neuropharm.2018.09.032 From NLM Medline.
(9) Zhao, Q.; Zhang, J.; Li, H.; Li, H.; Xie, F. Models of traumatic brain injury-highlights and drawbacks. Front Neurol 2023, 14, 1151660. DOI: 10.3389/fneur.2023.1151660 From NLM PubMed-not-MEDLINE.
(10) Bergold, P. J. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2016, 275 Pt 3 (Pt 3), 367-380. DOI: 10.1016/j.expneurol.2015.05.024 From NLM Medline.
(11) Hellewell, S.; Semple, B. D.; Morganti-Kossmann, M. C. Therapies negating neuroinflammation after brain trauma. Brain Res 2016, 1640 (Pt A), 36-56. DOI: 10.1016/j.brainres.2015.12.024 From NLM Medline.
(12) Johnson, N. H.; de Rivero Vaccari, J. P.; Bramlett, H. M.; Keane, R. W.; Dietrich, W. D. Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023, 254, 1-12. DOI: 10.1016/j.trsl.2022.08.014 From NLM Medline.
(13) Alam, A.; Thelin, E. P.; Tajsic, T.; Khan, D. Z.; Khellaf, A.; Patani, R.; Helmy, A. Cellular infiltration in traumatic brain injury. J Neuroinflammation 2020, 17 (1), 328. DOI: 10.1186/s12974-020-02005-x From NLM Medline.
(14) Ogurcov, S.; Shulman, I.; Garanina, E.; Sabirov, D.; Baichurina, I.; Kuznetcov, M.; Masgutova, G.; Kostennikov, A.; Rizvanov, A.; James, V.; Mukhamedshina, Y. Blood Serum Cytokines in Patients with Subacute Spinal Cord Injury: A Pilot Study to Search for Biomarkers of Injury Severity. Brain Sci 2021, 11 (3). DOI: 10.3390/brainsci11030322 From NLM PubMed-not-MEDLINE.
(15) Ellman, D. G.; Lund, M. C.; Nissen, M.; Nielsen, P. S.; Sorensen, C.; Lester, E. B.; Thougaard, E.; Jorgensen, L. H.; Nedospasov, S. A.; Andersen, D. C.; et al. Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice. Cells 2020, 9 (11). DOI: 10.3390/cells9112407 From NLM Medline.
(16) Sun, G.; Yang, S.; Cao, G.; Wang, Q.; Hao, J.; Wen, Q.; Li, Z.; So, K. F.; Liu, Z.; Zhou, S.; et al. gammadelta T cells provide the early source of IFN-gamma to aggravate lesions in spinal cord injury. J Exp Med 2018, 215 (2), 521-535. DOI: 10.1084/jem.20170686 From NLM Medline.
(17) Jacquens, A.; Needham, E. J.; Zanier, E. R.; Degos, V.; Gressens, P.; Menon, D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022, 23 (19). DOI: 10.3390/ijms231911193 From NLM Medline.
(18) Pekny, M.; Pekna, M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 2016, 1862 (3), 483-491. DOI: 10.1016/j.bbadis.2015.11.014 From NLM Medline.
(19) Amlerova, Z.; Chmelova, M.; Anderova, M.; Vargova, L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024, 18, 1335849. DOI: 10.3389/fncel.2024.1335849 From NLM PubMed-not-MEDLINE.
(20) Donat, C. K.; Scott, G.; Gentleman, S. M.; Sastre, M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017, 9, 208. DOI: 10.3389/fnagi.2017.00208 From NLM PubMed-not-MEDLINE.
(21) Borst, K.; Dumas, A. A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity 2021, 54 (10), 2194-2208. DOI: 10.1016/j.immuni.2021.09.014 From NLM Medline.
(22) Loane, D. J.; Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016, 275 Pt 3 (0 3), 316-327. DOI: 10.1016/j.expneurol.2015.08.018 From NLM Medline.
(23) Feng, Y.; Hu, X.; Zhang, Y.; Wang, Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024, 15 (1), 169-185. DOI: 10.14336/AD.2023.0514 From NLM Medline.
(24) Kim, Y.; Park, J.; Choi, Y. K. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants (Basel) 2019, 8 (5). DOI: 10.3390/antiox8050121 From NLM PubMed-not-MEDLINE.
(25) Michinaga, S.; Koyama, Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021, 22 (12). DOI: 10.3390/ijms22126418 From NLM Medline.
(26) Munoz-Ballester, C.; Robel, S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023, 15 (5), e1622. DOI: 10.1002/wsbm.1622 From NLM Medline.
(27) Brett, B. L.; Gardner, R. C.; Godbout, J.; Dams-O'Connor, K.; Keene, C. D. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol Psychiatry 2022, 91 (5), 498-507. DOI: 10.1016/j.biopsych.2021.05.025 From NLM Medline.
(28) Lawrence, J. M.; Schardien, K.; Wigdahl, B.; Nonnemacher, M. R. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 2023, 11 (1), 42. DOI: 10.1186/s40478-023-01526-9 From NLM Medline.
(29) Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat Rev Mater 2020, 5 (1), 20-43. DOI: 10.1038/s41578-019-0148-6 From NLM PubMed-not-MEDLINE.
(30) Re, F.; Sartore, L.; Moulisova, V.; Cantini, M.; Almici, C.; Bianchetti, A.; Chinello, C.; Dey, K.; Agnelli, S.; Manferdini, C.; et al. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J Tissue Eng 2019, 10, 2041731419845852. DOI: 10.1177/2041731419845852 From NLM PubMed-not-MEDLINE.
(31) Zhu, H.; Zheng, J.; Oh, X. Y.; Chan, C. Y.; Low, B. Q. L.; Tor, J. Q.; Jiang, W.; Ye, E.; Loh, X. J.; Li, Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS Nano 2023, 17 (9), 7953-7978. DOI: 10.1021/acsnano.2c12448 From NLM Medline.
(32) Schwieger, J.; Hamm, A.; Gepp, M. M.; Schulz, A.; Hoffmann, A.; Lenarz, T.; Scheper, V. Alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. J Tissue Eng 2020, 11, 2041731420911313. DOI: 10.1177/2041731420911313 From NLM PubMed-not-MEDLINE.
(33) Luo, Y.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C. A.; Bettinger, C. J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17 (6), 5211-5295. DOI: 10.1021/acsnano.2c12606 From NLM Medline.
(34) Tang, H.; Yang, Y.; Liu, Z.; Li, W.; Zhang, Y.; Huang, Y.; Kang, T.; Yu, Y.; Li, N.; Tian, Y.; et al. Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 2024, 630 (8015), 84-90. DOI: 10.1038/s41586-024-07334-y From NLM Medline.
(35) Li, X.; Sun, Q.; Li, Q.; Kawazoe, N.; Chen, G. Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Front Chem 2018, 6, 499. DOI: 10.3389/fchem.2018.00499 From NLM PubMed-not-MEDLINE.
(36) Lisboa, E. S.; Serafim, C.; Santana, W.; Dos Santos, V. L. S.; de Albuquerque-Junior, R. L. C.; Chaud, M. V.; Cardoso, J. C.; Jain, S.; Severino, P.; Souto, E. B. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024, 365, 617-639. DOI: 10.1016/j.jconrel.2023.11.056 From NLM Medline.
(37) Miri, A. K.; Hosseinabadi, H. G.; Cecen, B.; Hassan, S.; Zhang, Y. S. Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomater 2018, 77, 38-47. DOI: 10.1016/j.actbio.2018.07.006 From NLM Medline.
(38) Ludwig, P. E.; Huff, T. J.; Zuniga, J. M. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 2018, 9, 2041731418769863. DOI: 10.1177/2041731418769863 From NLM PubMed-not-MEDLINE.
(39) Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254-271. DOI: 10.1016/j.biomaterials.2015.08.045 From NLM Medline.
(40) Kurian, A. G.; Singh, R. K.; Patel, K. D.; Lee, J. H.; Kim, H. W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022, 8, 267-295. DOI: 10.1016/j.bioactmat.2021.06.027 From NLM PubMed-not-MEDLINE.
(41) Paul, A.; Manoharan, V.; Krafft, D.; Assmann, A.; Uquillas, J. A.; Shin, S. R.; Hasan, A.; Hussain, M. A.; Memic, A.; Gaharwar, A. K.; Khademhosseini, A. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 2016, 4 (20), 3544-3554. DOI: 10.1039/C5TB02745D From NLM PubMed-not-MEDLINE.
(42) Liu, Y.; Hsu, S. H. Synthesis and Biomedical Applications of Self-healing Hydrogels. Front Chem 2018, 6, 449. DOI: 10.3389/fchem.2018.00449 From NLM PubMed-not-MEDLINE.
(43) Xu, J.; Liu, Y.; Hsu, S. H. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019, 24 (16). DOI: 10.3390/molecules24163005 From NLM Medline.
(44) Cole, J. H.; Jolly, A.; de Simoni, S.; Bourke, N.; Patel, M. C.; Scott, G.; Sharp, D. J. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury. Brain 2018, 141 (3), 822-836. DOI: 10.1093/brain/awx354 From NLM Medline.
(45) Hsu, R. S.; Li, S. J.; Fang, J. H.; Lee, I. C.; Chu, L. A.; Lo, Y. C.; Lu, Y. J.; Chen, Y. Y.; Hu, S. H. Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022, 13 (1), 5172. DOI: 10.1038/s41467-022-32912-x From NLM Medline.
(46) Yan, L.; Zhao, C.; Wang, Y.; Qin, Q.; Liu, Z.; Hu, Y.; Xu, Z.; Wang, K.; Jiang, X.; Han, L.; Lu, X. Adhesive and conductive hydrogel-based therapy simultaneously targeting neuroinflammation and neurofunctional damage after brain injury. Nano Today 2023, 51, 101934. DOI: https://doi.org/10.1016/j.nantod.2023.101934.
(47) Xu, J.; Hsu, S.-h. Self-healing hydrogel as an injectable implant: translation in brain diseases. Journal of Biomedical Science 2023, 30 (1), 43. DOI: 10.1186/s12929-023-00939-x.
(48) Kittel, Y.; Kuehne, A. J. C.; De Laporte, L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022, 11 (6). DOI: ARTN 2101989
10.1002/adhm.202101989.
(49) Zheng, J. X.; Zhu, C. J.; Xu, X.; Wang, X. W.; Fu, J. Supramolecular assemblies of multifunctional microgels for biomedical applications. Journal of Materials Chemistry B 2023, 11 (27), 6265-6289. DOI: 10.1039/d3tb00346a.
(50) Krüger, A. J. D.; Bakirman, O.; Guerzoni, L. P. B.; Jans, A.; Gehlen, D. B.; Rommel, D.; Haraszti, T.; Kuehne, A. J. C.; De Laporte, L. Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness. Adv Mater 2019, 31 (49). DOI: ARTN 1903668
10.1002/adma.201903668.
(51) Husman, D.; Welzel, P. B.; Vogler, S.; Bray, L. J.; Träber, N.; Friedrichs, J.; Körber, V.; Tsurkan, M. V.; Freudenberg, U.; Thiele, J.; Werner, C. Multiphasic
materials to recapitulate cellular mesoenvironments. Biomater Sci-Uk 2020, 8 (1), 101-108. DOI: 10.1039/c9bm01009b.
(52) Liu, D. F.; Zhang, H. B.; Fontana, F.; Hirvonen, J. T.; Santos, H. A. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliver Rev 2018, 128, 54-83. DOI: 10.1016/j.addr.2017.08.003.
(53) Heida, T.; Otto, O.; Biedenweg, D.; Hauck, N.; Thiele, J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers-Basel 2020, 12 (8). DOI: ARTN 1760
10.3390/polym12081760.
(54) Guerzoni, L. P. B.; Rose, J. C.; Gehlen, D. B.; Jans, A.; Haraszti, T.; Wessling, M.; Kuehne, A. J. C.; De Laporte, L. Cell Encapsulation in Soft, Anisometric Poly(ethylene) Glycol Microgels Using a Novel Radical-Free Microfluidic System. Small 2019, 15 (20). DOI: ARTN 1900692
10.1002/smll.201900692.
(55) Sheikhi, A.; de Rutte, J.; Haghniaz, R.; Akouissi, O.; Sohrabi, A.; Di Carlo, D.; Khademhosseini, A. Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization. MethodsX 2019, 6, 1747-1752. DOI: 10.1016/j.mex.2019.07.018 From NLM PubMed-not-MEDLINE.
(56) Mao, A. S.; Shin, J. W.; Utech, S.; Wang, H. N.; Uzun, O.; Li, W. W.; Cooper, M.; Hu, Y. B.; Zhang, L. Y.; Weitz, D. A.; Mooney, D. J. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater 2017, 16 (2), 236-243. DOI: 10.1038/Nmat4781.
(57) Farjami, T.; Madadlou, A. Fabrication methods of biopolymeric microgels and microgel-based hydrogels. Food Hydrocolloid 2017, 62, 262-272. DOI: 10.1016/j.foodhyd.2016.08.017.
(58) Hess, D.; Yang, T. J.; Stavrakis, S. Droplet-based optofluidic systems for measuring enzyme kinetics. Anal Bioanal Chem 2020, 412 (14), 3265-3283. DOI: 10.1007/s00216-019-02294-z.
(59) Lo, S. J.; Yao, D. J. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis. International Journal of Molecular Sciences 2015, 16 (8), 16763-16777. DOI: 10.3390/ijms160816763.
(60) Verrills, P.; Sinclair, C.; Barnard, A. A review of spinal cord stimulation systems for chronic pain. J Pain Res 2016, 9, 481-492. DOI: 10.2147/Jpr.S108884.
(61) Han, F.; Ma, X.; Zhai, Y. X.; Cui, L. S.; Yang, L. Y.; Zhu, Z. C.; Hao, Y.; Cheng, G. S. Strategy for Designing a Cell Scaffold to Enable Wireless Electrical Stimulation for Enhanced Neuronal Differentiation of Stem Cells. Adv Healthc Mater 2021, 10 (11). DOI: ARTN 2100027
10.1002/adhm.202100027.
(62) Chen, J. C.; Kan, P.; Yu, Z.; Alrashdan, F.; Garcia, R.; Singer, A.; Lai, C. S. E.; Avants, B.; Crosby, S.; Li, Z.; et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022, 6 (6), 706-716. DOI: 10.1038/s41551-022-00873-7 From NLM Medline.
(63) Won, S. M.; Cai, L.; Gutruf, P.; Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023, 7 (4), 405-423. DOI: 10.1038/s41551-021-00683-3 From NLM Medline.
(64) Lu, L.; Gutruf, P.; Xia, L.; Bhatti, D. L.; Wang, X.; Vazquez-Guardado, A.; Ning, X.; Shen, X.; Sang, T.; Ma, R.; et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Natl Acad Sci U S A 2018, 115 (7), E1374-E1383. DOI: 10.1073/pnas.1718721115 From NLM Medline.
(65) Murphy, C.; Matikainen-Ankney, B.; Chang, Y. H.; Copits, B.; Creed, M. C. Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. Int Rev Neurobiol 2021, 159, 187-219. DOI: 10.1016/bs.irn.2021.06.002 From NLM Medline.
(66) Yang, X.; McGlynn, E.; Das, R.; Pasca, S. P.; Cui, B.; Heidari, H. Nanotechnology Enables Novel Modalities for Neuromodulation. Adv Mater 2021, 33 (52), e2103208. DOI: 10.1002/adma.202103208 From NLM Medline.
(67) Translating neuromodulation. Nat Biotechnol 2019, 37 (9), 967. DOI: 10.1038/s41587-019-0263-3 From NLM Medline.
(68) Li, C.; Liu, S. Y.; Pi, W.; Zhang, P. X. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res 2021, 16 (8), 1518-1523. DOI: 10.4103/1673-5374.303008 From NLM PubMed-not-MEDLINE.
(69) McGregor, C. E.; English, A. W. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2018, 12, 522. DOI: 10.3389/fncel.2018.00522 From NLM PubMed-not-MEDLINE.
(70) Chu, X. L.; Song, X. Z.; Li, Q.; Li, Y. R.; He, F.; Gu, X. S.; Ming, D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022, 17 (10), 2185-2193. DOI: 10.4103/1673-5374.335823 From NLM PubMed-not-MEDLINE.
(71) Cohen, S.; Richter-Levin, A.; Shefi, O. Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. eNeuro 2020, 7 (3). DOI: 10.1523/ENEURO.0030-19.2020 From NLM Medline.
(72) Carvalho, C. R.; Silva-Correia, J.; Oliveira, J. M.; Reis, R. L. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019, 148, 308-343. DOI: 10.1016/j.addr.2019.01.006 From NLM Medline.
(73) Shi, S.; Ou, X.; Cheng, D. Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration. Int J Nanomedicine 2024, 19, 19-34. DOI: 10.2147/IJN.S442775 From NLM Medline.
(74) Jin, Y.; Zhang, W.; Zhang, Y.; Yang, Y.; Fang, Z.; Song, J.; Qian, Y.; Yuan, W. E. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022, 135, 212727. DOI: 10.1016/j.bioadv.2022.212727 From NLM Medline.
(75) Amini, S.; Saudi, A.; Amirpour, N.; Jahromi, M.; Najafabadi, S. S.; Kazemi, M.; Rafienia, M.; Salehi, H. Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol 2020, 159, 154-173. DOI: 10.1016/j.ijbiomac.2020.05.073 From NLM Medline.
(76) Zhao, Y.; Liang, Y.; Ding, S.; Zhang, K.; Mao, H. Q.; Yang, Y. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 2020, 255, 120164. DOI: 10.1016/j.biomaterials.2020.120164 From NLM Medline.
(77) ElAbd, R.; Alabdulkarim, A.; AlSabah, S.; Hazan, J.; Alhalabi, B.; Thibaudeau, S. Role of Electrical Stimulation in Peripheral Nerve Regeneration: A Systematic Review. Plast Reconstr Surg Glob Open 2022, 10 (3), e4115. DOI: 10.1097/GOX.0000000000004115 From NLM PubMed-not-MEDLINE.
(78) Tai, Y.; Tonmoy, T. I.; Win, S.; Brinkley, N. T.; Park, B. H.; Nam, J. Enhanced peripheral nerve regeneration by mechano-electrical stimulation. NPJ Regen Med 2023, 8 (1), 57. DOI: 10.1038/s41536-023-00334-y From NLM PubMed-not-MEDLINE.
(79) Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019, 48 (1), 72-133. DOI: 10.1039/c8cs00324f From NLM PubMed-not-MEDLINE.
(80) Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A.; Zhou, Z.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557 (7705), 409-412. DOI: 10.1038/s41586-018-0109-z From NLM PubMed-not-MEDLINE.
(81) Dai, C.; Chen, Y.; Jing, X.; Xiang, L.; Yang, D.; Lin, H.; Liu, Z.; Han, X.; Wu, R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano 2017, 11 (12), 12696-12712. DOI: 10.1021/acsnano.7b07241 From NLM Medline.
(82) Liao, H.; Guo, X. L.; Wan, P. B.; Yu, G. H. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv Funct Mater 2019, 29 (39). DOI: ARTN 1904507
10.1002/adfm.201904507.
(83) Thrivikraman, G.; Boda, S. K.; Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60-86. DOI: 10.1016/j.biomaterials.2017.10.003.
(84) Ma, L.; Li, Z. Y.; Li, W. H.; Ai, J.; Chen, X. X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy
and. Rna Biol 2019, 16 (12), 1733-1748. DOI: 10.1080/15476286.2019.1657352.
(85) Driscoll, N.; Richardson, A. G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; Vitale, F. Two -Dimensional Ti
C
MXene for High-Resolution Neural Interfaces. Acs Nano 2018, 12 (10), 10419-10429. DOI: 10.1021/acsnano.8b06014.
(86) Guo, R. R.; Xiao, M.; Zhao, W. Y.; Zhou, S.; Hu, Y. N.; Liao, M. H.; Wang, S. P.; Yang, X. W.; Chai, R. J.; Tang, M. L. 2D Ti
C
T
MXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomaterialia 2022, 139, 105-117. DOI: 10.1016/j.actbio.2020.12.035.
(87) Raniolo, S.; Vindigni, G.; Ottaviani, A.; Unida, V.; Iacovelli, F.; Manetto, A.; Figini, M.; Stella, L.; Desideri, A.; Biocca, S. Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. Nanomed-Nanotechnol 2018, 14 (4), 1181-1190. DOI: 10.1016/j.nano.2018.02.002.
(88) Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2019, 119 (10), 6459-6506. DOI: 10.1021/acs.chemrev.7b00663.
(89) Wang, Y. J.; Shang, X. X.; Liu, J.; Guo, Y. S. ATP mediated rolling circle amplification and opening DNA-gate for drug delivery to cell. Talanta 2018, 176, 652-658. DOI: 10.1016/j.talanta.2017.08.087.
(90) Chen, K. R.; Zhang, Y. Z.; Zhu, L. J.; Chu, H. S.; Shao, X. L.; Asakiya, C.; Huang, K. L.; Xu, W. T. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. Journal of Controlled Release 2022, 341, 869-891. DOI: 10.1016/j.jconrel.2021.12.020.
(91) Martier, R.; Konstantinova, P. Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Front Neurosci-Switz 2020, 14. DOI: ARTN 580179
10.3389/fnins.2020.580179.
(92) Cucchiarini, M.; Madry, H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2019, 15 (1), 18-29. DOI: 10.1038/s41584-018-0125-2.
(93) David, C.; de Souza, J. F.; Silva, A. F.; Grazioli, G.; Barboza, A. S.; Lund, R. G.; Fajardo, A. R.; Moraes, R. R. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. J Mater Sci-Mater M 2024, 35 (1). DOI: ARTN 14
10.1007/s10856-023-06773-9.
(94) Li, B.; Wang, F.; Hu, F. Q.; Ding, T.; Huang, P.; Xu, X.; Liang, J.; Li, C. W.; Zhou, Q.; Lu, M.; et al. Injectable "nano-micron" combined gene-hydrogel microspheres for local treatment of osteoarthritis. Npg Asia Mater 2022, 14 (1). DOI: ARTN 1
10.1038/s41427-021-00351-7.
(95) Lu, Z. G.; Shen, J.; Yang, J.; Wang, J. W.; Zhao, R. C.; Zhang, T. L.; Guo, J.; Zhang, X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Tar 2023, 8 (1). DOI: ARTN 39
10.1038/s41392-022-01298-z.
(96) Katti, A.; Diaz, B. J.; Caragine, C. M.; Sanjana, N. E.; Dow, L. E. CRISPR in cancer biology and therapy. Nat Rev Cancer 2022, 22 (5), 259-279. DOI: 10.1038/s41568-022-00441-w.
(97) Ji, W. H.; Li, Y.; Peng, H.; Zhao, R. C.; Zhang, X. Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliver Rev 2022, 180. DOI: ARTN 114029
10.1016/j.addr.2021.114029.
(98) Aljovic, A.; Jacobi, A.; Marcantoni, M.; Kagerer, F.; Loy, K.; Kendirli, A.; Braeutigam, J.; Fabbio, L.; Van Steenbergen, V.; Plesniar, K.; et al. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury. Embo Mol Med 2023, 15 (2). DOI: 10.15252/emmm.202216111.
(99) Pons-Espinal, M.; de Luca, E.; Marzi, M. J.; Beckervordersandforth, R.; Armirotti, A.; Nicassio, F.; Fabel, K.; Kempermann, G.; Tonelli, D. D. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells. Stem Cell Rep 2017, 8 (4), 1046-1061. DOI: 10.1016/j.stemcr.2017.02.012.
(100) Xia, X. H.; Wang, Y.; Zheng, J. C. The microRNA-17 similar to 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev Rep 2022, 18 (2), 401-411. DOI: 10.1007/s12015-020-10050-5.
(101) Bond, A. M.; Ming, G. L.; Song, H. J. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell 2015, 17 (4), 385-395. DOI: 10.1016/j.stem.2015.09.003.
(102) Chen, Y.-J.; Huang, Y.-A.; Ho, C. T.; Yang, J.-M.; Chao, J.-I.; Li, M.-C.; Hwang, E. A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS Applied Bio Materials 2021, 4 (1), 890-902. DOI: 10.1021/acsabm.0c01389.
(103) Watanabe, T.; Takizawa, M.; Jiang, H.; Ngai, T.; Suzuki, D. Hydrophobized nanocomposite hydrogel microspheres as particulate stabilizers for water-in-oil emulsions. Chem Commun 2019, 55 (43), 5990-5993. DOI: 10.1039/c9cc01497g.
(104) Zhang, Y. Y.; Chen, H.; Li, J. S. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. International Journal of Biological Macromolecules 2022, 221, 91-107. DOI: 10.1016/j.ijbiomac.2022.08.171.
(105) Kvashina, T. S.; Uvarov, N. F.; Korchagin, M. A.; Krutskiy, Y. L.; Ukhina, A. V. Synthesis of MXene Ti
C
by selective etching of MAX-phase Ti
AlC. Mater Today-Proc 2020, 31, 592-594. DOI: 10.1016/j.matpr.2020.07.107.
(106) Zakeri, A.; Kouhbanani, M. A. J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S. M.; Hashemi, S. A. R.; Karimi Zade, A.; Amani, A. M.; Savardashtaki, A.; Mirzaei, E.; et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp 2018, 9 (1), 1488497. DOI: 10.1080/20022727.2018.1488497 From NLM PubMed-not-MEDLINE.
(107) Zhao, X.; Che, Y.; Mo, Y. H.; Huang, W. Q.; Wang, C. Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water. J Membrane Sci 2021, 640. DOI: ARTN 119847
10.1016/j.memsci.2021.119847.
(108) Casper, J.; Schenk, S. H.; Parhizkar, E.; Detampel, P.; Dehshahri, A.; Huwyler, J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. Journal of Controlled Release 2023, 362, 667-691. DOI: 10.1016/j.jconrel.2023.09.001.
(109) Hughes, C. S.; Colhoun, L. M.; Bains, B. K.; Kilgour, J. D.; Burden, R. E.; Burrows, J. F.; Lavelle, E. C.; Gilmore, B. F.; Scott, C. J. Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages. Part Fibre Toxicol 2016, 13. DOI: ARTN 19
10.1186/s12989-016-0129-5.
(110) Tracey, S. R.; Smyth, P.; Barelle, C. J.; Scott, C. J. Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochem Soc T 2021, 49 (5), 2253-2269. DOI: 10.1042/Bst20210343.
(111) Ebert, M. S.; Neilson, J. R.; Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4 (9), 721-726. DOI: 10.1038/nmeth1079 From NLM Medline.
(112) Tang, Y. W.; Yu, P.; Cheng, L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017, 8. DOI: ARTN e3108
10.1038/cddis.2017.504.
(113) Menon, S.; Gupton, S. Recent advances in branching mechanisms underlying neuronal morphogenesis. F1000Res 2018, 7. DOI: 10.12688/f1000research.16038.1 From NLM Medline.
(114) Chandran, V.; Coppola, G.; Nawabi, H.; Omura, T.; Versano, R.; Huebner, E. A.; Zhang, A.; Costigan, M.; Yekkirala, A.; Barrett, L.; et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 2016, 89 (5), 956-970. DOI: 10.1016/j.neuron.2016.01.034 From NLM Medline.
(115) Bhalala, O. G.; Srikanth, M.; Kessler, J. A. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013, 9 (6), 328-339. DOI: 10.1038/nrneurol.2013.67 From NLM Medline.
(116) Yunta, M.; Nieto-Diaz, M.; Esteban, F. J.; Caballero-Lopez, M.; Navarro-Ruiz, R.; Reigada, D.; Pita-Thomas, D. W.; del Aguila, A.; Munoz-Galdeano, T.; Maza, R. M. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012, 7 (4), e34534. DOI: 10.1371/journal.pone.0034534 From NLM Medline.
(117) Uryash, A.; Flores, V.; Adams, J. A.; Allen, P. D.; Lopez, J. R. Memory and Learning Deficits Are Associated With Ca(2+) Dyshomeostasis in Normal Aging. Front Aging Neurosci 2020, 12, 224. DOI: 10.3389/fnagi.2020.00224 From NLM PubMed-not-MEDLINE.
(118) Weber, J. T. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012, 3, 60. DOI: 10.3389/fphar.2012.00060 From NLM PubMed-not-MEDLINE.
(119) Lisek, M.; Tomczak, J.; Boczek, T.; Zylinska, L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024, 14 (2). DOI: 10.3390/biom14020183 From NLM Medline.
(120) Ordaz, J. D.; Wu, W.; Xu, X. M. Optogenetics and its application in neural degeneration and regeneration. Neural Regen Res 2017, 12 (8), 1197-1209. DOI: 10.4103/1673-5374.213532 From NLM PubMed-not-MEDLINE.
(121) Lynch, K. J.; Skalli, O.; Sabri, F. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field. J Funct Biomater 2018, 9 (2). DOI: 10.3390/jfb9020030 From NLM PubMed-not-MEDLINE.
(122) Ziebell, J. M.; Morganti-Kossmann, M. C. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010, 7 (1), 22-30. DOI: 10.1016/j.nurt.2009.10.016 From NLM Medline.
(123) Frugier, T.; Morganti-Kossmann, M. C.; O'Reilly, D.; McLean, C. A. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 2010, 27 (3), 497-507. DOI: 10.1089/neu.2009.1120 From NLM Medline.
(124) Varvel, N. H.; Neher, J. J.; Bosch, A.; Wang, W.; Ransohoff, R. M.; Miller, R. J.; Dingledine, R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A 2016, 113 (38), E5665-5674. DOI: 10.1073/pnas.1604263113 From NLM Medline.
(125) Zhang, L.; Zhang, F.; Weng, Z. F.; Brown, B. N.; Yan, H. Q.; Ma, X. M.; Vosler, P. S.; Badylak, S. F.; Dixon, C. E.; Cui, X. T.; Chen, J. Effect of an Inductive Hydrogel Composed of Urinary Bladder Matrix Upon Functional Recovery Following Traumatic Brain Injury. Tissue Eng Pt A 2013, 19 (17-18), 1909-1918. DOI: 10.1089/ten.tea.2012.0622.
(126) Karve, I. P.; Taylor, J. M.; Crack, P. J. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 2016, 173 (4), 692-702. DOI: 10.1111/bph.13125 From NLM Medline.
(127) Auger, F. A.; Gibot, L.; Lacroix, D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 2013, 15, 177-200. DOI: 10.1146/annurev-bioeng-071812-152428 From NLM Medline.
(128) Cattin, A. L.; Burden, J. J.; Van Emmenis, L.; Mackenzie, F. E.; Hoving, J. J.; Garcia Calavia, N.; Guo, Y.; McLaughlin, M.; Rosenberg, L. H.; Quereda, V.; et al. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell 2015, 162 (5), 1127-1139. DOI: 10.1016/j.cell.2015.07.021 From NLM Medline.
(129) Ridaura, I. E.; Sorrentino, S.; Moroni, L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. Adv Sci 2021, 8 (23). DOI: ARTN 2101837
10.1002/advs.202101837.
(130) Ramos, T.; Ahmed, M.; Wieringa, P.; Moroni, L. Schwann cells promote endothelial cell migration. Cell Adh Migr 2015, 9 (6), 441-451. DOI: 10.1080/19336918.2015.1103422 From NLM Medline.
(131) Li, C.; Zhu, A.; Yang, L.; Wang, X.; Guo, Z. Advances in magnetoelectric composites for promoting bone regeneration: a review. J Mater Chem B 2024, 12 (18), 4361-4374. DOI: 10.1039/d3tb02617e From NLM Medline.
(132) Kim, J. H.; Min, K. J.; Seol, W.; Jou, I.; Joe, E. H. Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 2010, 115 (5), 1161-1171. DOI: 10.1111/j.1471-4159.2010.07004.x From NLM Medline.
(133) Jeong, H. K.; Ji, K. M.; Kim, J.; Jou, I.; Joe, E. H. Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes. Mol Brain 2013, 6, 28. DOI: 10.1186/1756-6606-6-28 From NLM Medline.
(134) Park, Y. G.; Sohn, C. H.; Chen, R.; McCue, M.; Yun, D. H.; Drummond, G. T.; Ku, T.; Evans, N. B.; Oak, H. C.; Trieu, W.; et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol 2018. DOI: 10.1038/nbt.4281 From NLM Publisher.
(135) Lin, Y. H.; Wang, L. W.; Chen, Y. H.; Chan, Y. C.; Hu, S. H.; Wu, S. Y.; Chiang, C. S.; Huang, G. J.; Yang, S. D.; Chu, S. W.; et al. Revealing intact neuronal circuitry in centimeter-sized formalin-fixed paraffin-embedded brain. Elife 2024, 13. DOI: 10.7554/eLife.93212 From NLM Medline.
(136) Zhang, Y.; Chen, S.; Xiao, Z.; Liu, X.; Wu, C.; Wu, K.; Liu, A.; Wei, D.; Sun, J.; Zhou, L.; Fan, H. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021, 10 (16), e2100695. DOI: 10.1002/adhm.202100695 From NLM Medline.
(此全文20260723後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
3. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
4. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
5. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
6. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
13. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
14. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
15. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
 
* *