|
[1]. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426. [2]. Natter, H., M. Schmelzer, and R. Hempelmann, Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability. Journal of Materials research, 1998. 13(5): p. 1186-1197. [3]. Hasegawa, M., et al., Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467. [4]. Thorseth, M.A., et al., Evaluation of High-Speed Copper Plating Products for RDL, Micropillar, and Fan-Out Applications. Additional Papers and Presentations, 2016. 2016(DPC): p. 000631-000649. [5]. Lin, C.-C. and C.-C. Hu, The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives. Journal of The Electrochemical Society, 2020. 167(8): p. 082505. [6]. Xu, D., et al., Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 2008. 85(10): p. 2155-2158. [7]. Xu, D., et al., In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. Journal of Applied Physics, 2009. 105(2). [8]. Cheng, G., et al., In situ observation of nanotwins formation through twin terrace growth in pulse electrodeposited Cu films. Scientific reports, 2017. 7(1): p. 12393. [9]. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司. [10]. Perez, N., Electrochemistry and corrosion science. 2004: Springer. [11]. Gernon, M., Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green chemistry, 1999. 1(3): p. 127-140. [12]. Dini, J.W. and D.D. Snyder, Electrodeposition of copper. Modern electroplating, 2010. 5: p. 33. [13]. Kondo, K., et al., Copper electrodeposition for nanofabrication of electronics devices. Vol. 171. 2014: Springer. [14]. Wagner, C., Theoretical analysis of the current density distribution in electrolytic cells. Journal of the Electrochemical Society, 1951. 98(3): p. 116. [15]. Price, D.C. and W.G. Davenport, Densities, electrical conductivities and viscosities of CuSO 4/H 2 SO 4 solutions in the range of modern electrorefining and electrowinning electrolytes. Metallurgical Transactions B, 1980. 11: p. 159-163. [16]. Moats, M.S., J.B. Hiskey, and D.W. Collins, The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy, 2000. 56(3): p. 255-268. [17]. Lin, C.-C., et al., Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils. Journal of The Electrochemical Society, 2017. 164(13): p. D810. [18]. Mattsson, E. and J.M. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper+ copper sulphate system. Transactions of the Faraday Society, 1959. 55: p. 1586-1601. [19]. Bockris, J.M. and M. Enyo, Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Transactions of the Faraday Society, 1962. 58: p. 1187-1202. [20]. Seiter, H., H. Fischer, and L. Albert, Elektrochemisch-morphologische studien zur erforschung des mechanismus der elektrokristallisation, fern vom anfangszustand. Electrochimica Acta, 1960. 2(1-3): p. 97-120. [21]. Tindall, G. and S. Bruckenstein, A ring-disk electrode study of the deposition and stripping of thin copper films at platinum in sulfuric acid. Analytical Chemistry, 1968. 40(11): p. 1637-1640. [22]. Tindall, G. and S. Bruckenstein, A ring-disk electrode study of the electrochemical reduction of copper (II) in 0.2 M sulfuric acid on platinum. Analytical Chemistry, 1968. 40(7): p. 1051-1054. [23]. Tindall, G. and S. Bruckenstein, Determination of heterogeneous equilibrium constants by chemical stripping at a ring-disk electrode. Evaluation of the equilibrium constant for the reaction copper+ copper (II)-> 2copper (I) in 0.2 M sulfuric acid. Analytical Chemistry, 1968. 40(10): p. 1402-1404. [24]. Hayashi, T. and M. Yokoi, The role of intermediate (Cu+) in the electrodeposition of copper from an acid copper sulfate bath under the pulsed current electrolysis. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1979. 47(11): p. 654-660. [25]. Daryadel, S., et al., Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano letters, 2018. 18(1): p. 208-214. [26]. Nagy, Z., et al., Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 1995. 142(6): p. L87. [27]. Soares, D.M., et al., Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 2002. 532(1-2): p. 353-358. [28]. Lee, W.-H., et al., Effect of halides on Cu electrodeposit film: potential-dependent impurity incorporation. Journal of The Electrochemical Society, 2017. 164(7): p. D493. [29]. Beica, R., C. Sharbono, and T. Ritzdorf. Through silicon via copper electrodeposition for 3D integration. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE. [30]. Chiu, Y.-D. and W.-P. Dow, Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. Journal of The Electrochemical Society, 2013. 160(12): p. D3021. [31]. Dow, W.-P., et al., Roles of chloride ion in microvia filling by copper electrodeposition: II. Studies using EPR and galvanostatic measurements. Journal of The Electrochemical Society, 2005. 152(2): p. C77. [32]. Schmitt, K.G., et al., 3-Mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry. The Journal of Physical Chemistry C, 2015. 119(41): p. 23453-23462. [33]. Choe, S., et al., Degradation of bis (3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling. Journal of The Electrochemical Society, 2013. 160(12): p. D3179. [34]. Kimizuka, R., et al., A study on the decomposition of SPS and its effects on via filling performance. ECS Transactions, 2015. 64(40): p. 23. [35]. Gallaway, J.W. and A.C. West, PEG, PPG, and their triblock copolymers as suppressors in copper electroplating. Journal of The Electrochemical Society, 2008. 155(10): p. D632. [36]. Yokoi, M., S. Konishi, and T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984. 52(4): p. 218-223. [37]. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: I. Quartz crystal microbalance study. Journal of The Electrochemical Society, 1998. 145(10): p. 3472. [38]. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy. Journal of The Electrochemical Society, 1998. 145(10): p. 3477. [39]. Healy, J.P., D. Pletcher, and M. Goodenough, The chemistry of the additives in an acid copper electroplating bath: part I. Polyethylene glycol and chloride ion. Journal of electroanalytical chemistry, 1992. 338(1-2): p. 155-165. [40]. Dow, W.-P., et al., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769. [41]. Dow, W.-P. and C.-W. Liu, Evaluating the filling performance of a copper plating formula using a simple galvanostat method. Journal of The Electrochemical Society, 2006. 153(3): p. C190. [42]. Cobley, A., D. Gabe, and J. Graves, The use of insoluble anodes in acid sulphate copper electrodeposition solutions. Transactions of the IMF, 2001. 79(3): p. 112-118. [43]. Lu, K., Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials, 2016. 1(5): p. 1-13. [44]. Ritzdorf, T., et al. Self-annealing of electrochemically deposited copper films in advanced interconnect applications. in Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No. 98EX102). 1998. IEEE. [45]. Lagrange, S., et al., Self-annealing characterization of electroplated copper films. Microelectronic Engineering, 2000. 50(1-4): p. 449-457. [46]. 汪暉凱, et al., 電鍍銅的自退火行為之縱深分析. 鑛冶: 中國鑛冶工程學會會刊, 2017. 61(4): p. 96-104. [47]. Lu, L., et al., Revealing the maximum strength in nanotwinned copper. Science, 2009. 323(5914): p. 607-610. [48]. Li, Y.-J., K.-N. Tu, and C. Chen, Tensile properties and thermal stability of unidirectionally< 111>-oriented nanotwinned and< 110>-oriented microtwinned copper. Materials, 2020. 13(5): p. 1211. [49]. Huang, C.L., et al., Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, 2021. 11(46): p. 2101827. [50]. Liu, S.-T., et al., Improvements in Li deposition and stripping induced by Cu (111) nanotwinned columnar grains. Electrochimica Acta, 2022. 430: p. 141011. [51]. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069. [52]. Han, H., et al., The self-annealing phenomenon of electrodeposited nano-twin copper with high defect density. Frontiers in Chemistry, 2022. 10: p. 1056596. [53]. Yang, C.-J., C.-L. Huang, and C.-N. Liao, Enhancing Chemical Stability of Electroplated Cu Films by Engineering Electrolyte Chemistry and Twinning Structure. Journal of Electronic Materials, 2015. 44: p. 2529-2535. [54]. Skiba, N., Twin Deformation Mechanisms in Nanocrystalline and Ultrafine-Grained Materials, in Nanocrystals and Nanostructures. 2018, IntechOpen London, UK. [55]. Brown, G. and G. Hope, SERS study of the adsorption of gelatin at a copper electrode in sulfuric acid solution. Journal of Electroanalytical Chemistry, 1995. 397(1-2): p. 293-300. [56]. Fegan, K. The Chemistry of Gelatin. Available from: https://chembam.com/resources-for-students/the-chemistry-of/gelatin/. [57]. Li, S., et al., Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition. Materials Science and Engineering: A, 2019. 758: p. 1-6. [58]. Li, Z.-G., et al., Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate. Journal of Materials Science, 2022. 57(37): p. 17797-17811. [59]. Sun, F.-L., et al., Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate. Journal of materials science & technology, 2018. 34(10): p. 1885-1890. [60]. Chang, T., et al., Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta, 2016. 211: p. 245-254. [61]. Liu, S.-H., et al., Roles of additives in damascene copper electropolishing. Journal of the Electrochemical Society, 2006. 153(6): p. C428. [62]. Boedtker, H. and P. Doty, A study of gelatin molecules, aggregates and gels. The journal of physical chemistry, 1954. 58(11): p. 968-983. [63]. Lu, L., et al., Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta materialia, 2005. 53(7): p. 2169-2179. [64]. Shen, Y., et al., Tensile properties of copper with nano-scale twins. Scripta Materialia, 2005. 52(10): p. 989-994. [65]. Chen, X., L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of applied physics, 2007. 102(8). [66]. Cheng, H.-Y., et al., Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating. Materials Science and Engineering: A, 2021. 811: p. 141065. [67]. Liu, S.-T., High-Speed Electrodeposition and Corresponding Electrochemical Analysis of Nanotwinned and Crystal Orientation-Controlled Copper Induced by Electroplating Additives, in 化學工程學系. 2022, 國立清華大學: 臺灣博碩士論文知識加值系統. [68]. Lu, C.-L., et al., Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135-e135. [69]. Kim, J. and H. Kim, Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide. Materials Chemistry and Physics, 2010. 120(2-3): p. 341-347. [70]. Tseng, C.-H., et al., Kinetic study of grain growth in highly (111)-preferred nanotwinned copper films. Materials Characterization, 2020. 168: p. 110545. [71]. Vitos, L., et al., The surface energy of metals. Surface science, 1998. 411(1-2): p. 186-202. [72]. Skriver, H.L. and N. Rosengaard, Surface energy and work function of elemental metals. Physical Review B, 1992. 46(11): p. 7157. [73]. Jian-Min, Z., M. Fei, and X. Ke-Wei, Calculation of the surface energy of FCC metals with modified embedded-atom method. Chinese Physics, 2004. 13(7): p. 1082. [74]. Xu, L., et al., Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins. Applied physics letters, 2007. 90(3). [75]. Kurapova, O.Y., et al., The microstructure and mechanical properties of twinned copper-bismuth films obtained by DC electrodeposition. Journal of Alloys and Compounds, 2021. 862: p. 158007. [76]. Zhan, X., et al., Preparation of highly (111) textured nanotwinned copper by medium-frequency pulsed electrodeposition in an additive-free electrolyte. Electrochimica Acta, 2021. 365: p. 137391. [77]. Zheng, Z., et al., Electrodeposition of (111)-oriented and nanotwin-doped nanocrystalline Cu with ultrahigh strength for 3D IC application. Nanotechnology, 2021. 32(22): p. 225702. [78]. Shi, H., et al., Quantitative analysis of organic additives in acid copper plating solution. Chemical Physics Letters, 2023. 828: p. 140700.
|