帳號:guest(3.142.12.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳詩樺
作者(外文):Chen, Shih-Hua
論文名稱(中文):以明膠誘導直流電鍍銅箔之晶面優選及其機制分析
論文名稱(外文):Gelatin-Induced Crystal Orientation of Copper Foils Prepared by Direct-Current Electrodeposition and Its Mechanism
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):陳翰儀
張仍奎
口試委員(外文):Chen, Han-Yi
Chang, Jeng-Kuei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:半導體研究學院
學號:110501704
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:101
中文關鍵詞:電鍍銅晶相控制雙晶生成機制電鍍添加劑晶相比較
外文關鍵詞:copperorientationadditivesnanotwinelectrodeposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:239
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電鍍銅技術廣泛運用在製造商用銅箔、銅複合板,以及半導體產業。透過調整電鍍參數,我們能夠生產不同特性的銅材以適應多樣的需求。近年來,多項研究發現,具有奈米雙晶結構的銅,其機械性能、抗氧化性質與催化性質皆有大幅地提升,且能有效改善電遷移現象。一般業界常使用脈衝電鍍的方式來製備雙晶,但該方法耗時,因此,本研究旨在探討使用較迅速的直流電鍍,根據不同電鍍液參數,以製備不同晶相優選的銅箔,並研究其中誘發雙晶生成的機制,因為相對於脈衝電鍍,直流電鍍的雙晶生成機制尚未有完整且直接的解釋。本論文研究主要包含兩大方向:
1.透過調整電鍍添加劑的比例和電流密度,製備不同優選晶面的銅箔。
首先,我們成功使用不同比例的明膠和氯離子,製備出(111)雙晶、(200)兩種優選晶面的銅箔。然後,我們透過X射線繞射儀、聚焦離子束系統和電子顯微鏡系統,對晶相和微結構進行驗證。接著,我們對以不同配方製作出之五種優選晶面的熱穩定性和硬度進行了比較研究。
2.透過電化學和應力分析,研究直流電鍍生成雙晶的機制。
我們使用旋轉環盤電極來分析不同添加劑組合對銅沉積行為的影響。不同添加劑比例導致亞銅離子和銅離子產生不同的反應中間體,進而對表面產生不同的應力,形成不同的晶面。因此,我們透過螺旋電鍍儀分析其中的應力變化,並結合這兩種分析方法,找出直流電鍍下生成雙晶的機制。
Copper electroplating is widely used in manufacturing commercial copper foils, copper clad laminate, and in the semiconductor industry. By adjusting electroplating parameters, we can fabricate different copper materials to specific needs. Recent studies have shown that copper with nanotwinned structures significantly improves mechanical properties, oxidation resistance, and catalytic performance, also addressing electron migration issues. While pulse electroplating is the conventional method for twin crystal production, it's rather time-consuming. This study aims to use direct current electroplating to produce copper foils in faster way with preferred crystal orientations by varying electroplating solution parameters. The study also aims to understand the mechanisms behind twinned structures formation through direct current electroplating, which lacks a comprehensive explanation compared to pulse electroplating. The research in this thesis has two primary directions:
1.Producing copper foils with preferred crystal orientations by adjusting the ratios of electroplating additives and current density.
Initially, we successfully fabricated copper foils with (111) nanotwinned structure, (200), (220) nanotwinned strcuture, and (220) preferred crystal orientations using different gelatin and chloride ion proportions. We verified crystal phases and microstructures using X-ray diffraction, focused ion beam systems, and electron microscopy. Subsequently, we compared the thermal stability and hardness of these four preferred crystal orientations.
2.Investigating the mechanism for twin crystal formation in direct current electroplating through electrochemical and stress analysis.
We employed a rotating ring-disk electrode to study the impact of various additive combinations on copper deposition behavior. Different additive ratios led to distinct reaction intermediates between cuprous ions and cupric ions, resulting in varying surface stresses and different crystal orientations. Our goal is to analyze stress variations using the spiral contractometer and combine both analysis methods to understand the mechanism for twin crystal formation in direct current electroplating.
摘要 iii
Abstract iv
致謝 vi
目錄 viii
圖目錄 xii
表目錄 xviii
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
2 第二章 文獻回顧 3
2.1 電化學原理與技術 3
2.1.1 電化學系統 3
2.1.2 電化學熱力學與動力學 5
2.1.3 電化學分析技術 8
2.1.4 流動系統之電化學分析 9
2.2 電鍍銅 11
2.2.1 電鍍銅系統 11
2.2.2 電鍍添加劑 16
2.2.3 陽極材料 27
2.2.4 奈米雙晶銅 29
2.2.5 明膠於電鍍銅上的應用 35
3 第三章 實驗流程與儀器簡介 39
3.1 實驗架構 39
3.2 化學藥品 39
3.2.1 電鍍銅 39
3.2.2 電化學拋光 40
3.3 儀器設備清單與原理 41
3.3.1 儀器設備清單 41
3.3.2 儀器設備原理 43
3.4 實驗步驟 50
3.4.1 前置作業 50
3.4.2 電鍍銅沉積之實驗流程 52
3.4.3 銅箔材料鑑定分析之樣品製備流程 53
3.4.4 銅箔材料應用分析之樣品製備流程 54
3.4.5 電化學分析之實驗流程 54
3.4.6 光譜分析之實驗架設 55
3.4.7 電鍍應力分析之實驗流程 56
4 第四章 結果與討論 58
4.1 不同電鍍參數與銅箔晶面之關係 58
4.1.1 明膠與氯離子組合所誘導之(111)雙晶銅晶面 59
4.1.2 明膠所誘導之(200)銅晶面 68
4.2 不同晶面之銅箔性質比較 71
4.2.1 熱穩定性比較 72
4.2.2 硬度的比較 75
4.3 利用電化學方法探討雙晶生長機制 77
4.3.1 不同添加劑組合所對應之銅還原機制 78
4.3.2 以RRDE於定電壓電鍍分析雙晶生長機制 84
4.4 利用螺旋應力儀探討雙晶生長機制 87
4.5 利用光譜分析探討添加劑於電鍍時的變化 90
5 第五章 結論與未來展望 92
5.1 結論 92
5.1.1 以電鍍添加劑製備具有雙晶結構之銅箔與其他優選晶面之銅箔 92
5.1.2 以電化學方法與應力量測分析雙晶生成之機制 92
5.2 未來展望 93
5.2.1 更完善的銅箔性質分析與半導體相關之應用 93
5.2.2 不同電鍍參數之應力分析系統建立 94
5.2.3 電化學分析與光譜分析及理論計算之結合 95
參考文獻 96
[1]. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.
[2]. Natter, H., M. Schmelzer, and R. Hempelmann, Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability. Journal of Materials research, 1998. 13(5): p. 1186-1197.
[3]. Hasegawa, M., et al., Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467.
[4]. Thorseth, M.A., et al., Evaluation of High-Speed Copper Plating Products for RDL, Micropillar, and Fan-Out Applications. Additional Papers and Presentations, 2016. 2016(DPC): p. 000631-000649.
[5]. Lin, C.-C. and C.-C. Hu, The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives. Journal of The Electrochemical Society, 2020. 167(8): p. 082505.
[6]. Xu, D., et al., Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 2008. 85(10): p. 2155-2158.
[7]. Xu, D., et al., In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. Journal of Applied Physics, 2009. 105(2).
[8]. Cheng, G., et al., In situ observation of nanotwins formation through twin terrace growth in pulse electrodeposited Cu films. Scientific reports, 2017. 7(1): p. 12393.
[9]. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司.
[10]. Perez, N., Electrochemistry and corrosion science. 2004: Springer.
[11]. Gernon, M., Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green chemistry, 1999. 1(3): p. 127-140.
[12]. Dini, J.W. and D.D. Snyder, Electrodeposition of copper. Modern electroplating, 2010. 5: p. 33.
[13]. Kondo, K., et al., Copper electrodeposition for nanofabrication of electronics devices. Vol. 171. 2014: Springer.
[14]. Wagner, C., Theoretical analysis of the current density distribution in electrolytic cells. Journal of the Electrochemical Society, 1951. 98(3): p. 116.
[15]. Price, D.C. and W.G. Davenport, Densities, electrical conductivities and viscosities of CuSO 4/H 2 SO 4 solutions in the range of modern electrorefining and electrowinning electrolytes. Metallurgical Transactions B, 1980. 11: p. 159-163.
[16]. Moats, M.S., J.B. Hiskey, and D.W. Collins, The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy, 2000. 56(3): p. 255-268.
[17]. Lin, C.-C., et al., Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils. Journal of The Electrochemical Society, 2017. 164(13): p. D810.
[18]. Mattsson, E. and J.M. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper+ copper sulphate system. Transactions of the Faraday Society, 1959. 55: p. 1586-1601.
[19]. Bockris, J.M. and M. Enyo, Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Transactions of the Faraday Society, 1962. 58: p. 1187-1202.
[20]. Seiter, H., H. Fischer, and L. Albert, Elektrochemisch-morphologische studien zur erforschung des mechanismus der elektrokristallisation, fern vom anfangszustand. Electrochimica Acta, 1960. 2(1-3): p. 97-120.
[21]. Tindall, G. and S. Bruckenstein, A ring-disk electrode study of the deposition and stripping of thin copper films at platinum in sulfuric acid. Analytical Chemistry, 1968. 40(11): p. 1637-1640.
[22]. Tindall, G. and S. Bruckenstein, A ring-disk electrode study of the electrochemical reduction of copper (II) in 0.2 M sulfuric acid on platinum. Analytical Chemistry, 1968. 40(7): p. 1051-1054.
[23]. Tindall, G. and S. Bruckenstein, Determination of heterogeneous equilibrium constants by chemical stripping at a ring-disk electrode. Evaluation of the equilibrium constant for the reaction copper+ copper (II)-> 2copper (I) in 0.2 M sulfuric acid. Analytical Chemistry, 1968. 40(10): p. 1402-1404.
[24]. Hayashi, T. and M. Yokoi, The role of intermediate (Cu+) in the electrodeposition of copper from an acid copper sulfate bath under the pulsed current electrolysis. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1979. 47(11): p. 654-660.
[25]. Daryadel, S., et al., Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano letters, 2018. 18(1): p. 208-214.
[26]. Nagy, Z., et al., Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 1995. 142(6): p. L87.
[27]. Soares, D.M., et al., Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 2002. 532(1-2): p. 353-358.
[28]. Lee, W.-H., et al., Effect of halides on Cu electrodeposit film: potential-dependent impurity incorporation. Journal of The Electrochemical Society, 2017. 164(7): p. D493.
[29]. Beica, R., C. Sharbono, and T. Ritzdorf. Through silicon via copper electrodeposition for 3D integration. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
[30]. Chiu, Y.-D. and W.-P. Dow, Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. Journal of The Electrochemical Society, 2013. 160(12): p. D3021.
[31]. Dow, W.-P., et al., Roles of chloride ion in microvia filling by copper electrodeposition: II. Studies using EPR and galvanostatic measurements. Journal of The Electrochemical Society, 2005. 152(2): p. C77.
[32]. Schmitt, K.G., et al., 3-Mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry. The Journal of Physical Chemistry C, 2015. 119(41): p. 23453-23462.
[33]. Choe, S., et al., Degradation of bis (3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling. Journal of The Electrochemical Society, 2013. 160(12): p. D3179.
[34]. Kimizuka, R., et al., A study on the decomposition of SPS and its effects on via filling performance. ECS Transactions, 2015. 64(40): p. 23.
[35]. Gallaway, J.W. and A.C. West, PEG, PPG, and their triblock copolymers as suppressors in copper electroplating. Journal of The Electrochemical Society, 2008. 155(10): p. D632.
[36]. Yokoi, M., S. Konishi, and T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984. 52(4): p. 218-223.
[37]. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: I. Quartz crystal microbalance study. Journal of The Electrochemical Society, 1998. 145(10): p. 3472.
[38]. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy. Journal of The Electrochemical Society, 1998. 145(10): p. 3477.
[39]. Healy, J.P., D. Pletcher, and M. Goodenough, The chemistry of the additives in an acid copper electroplating bath: part I. Polyethylene glycol and chloride ion. Journal of electroanalytical chemistry, 1992. 338(1-2): p. 155-165.
[40]. Dow, W.-P., et al., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769.
[41]. Dow, W.-P. and C.-W. Liu, Evaluating the filling performance of a copper plating formula using a simple galvanostat method. Journal of The Electrochemical Society, 2006. 153(3): p. C190.
[42]. Cobley, A., D. Gabe, and J. Graves, The use of insoluble anodes in acid sulphate copper electrodeposition solutions. Transactions of the IMF, 2001. 79(3): p. 112-118.
[43]. Lu, K., Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials, 2016. 1(5): p. 1-13.
[44]. Ritzdorf, T., et al. Self-annealing of electrochemically deposited copper films in advanced interconnect applications. in Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No. 98EX102). 1998. IEEE.
[45]. Lagrange, S., et al., Self-annealing characterization of electroplated copper films. Microelectronic Engineering, 2000. 50(1-4): p. 449-457.
[46]. 汪暉凱, et al., 電鍍銅的自退火行為之縱深分析. 鑛冶: 中國鑛冶工程學會會刊, 2017. 61(4): p. 96-104.
[47]. Lu, L., et al., Revealing the maximum strength in nanotwinned copper. Science, 2009. 323(5914): p. 607-610.
[48]. Li, Y.-J., K.-N. Tu, and C. Chen, Tensile properties and thermal stability of unidirectionally< 111>-oriented nanotwinned and< 110>-oriented microtwinned copper. Materials, 2020. 13(5): p. 1211.
[49]. Huang, C.L., et al., Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, 2021. 11(46): p. 2101827.
[50]. Liu, S.-T., et al., Improvements in Li deposition and stripping induced by Cu (111) nanotwinned columnar grains. Electrochimica Acta, 2022. 430: p. 141011.
[51]. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069.
[52]. Han, H., et al., The self-annealing phenomenon of electrodeposited nano-twin copper with high defect density. Frontiers in Chemistry, 2022. 10: p. 1056596.
[53]. Yang, C.-J., C.-L. Huang, and C.-N. Liao, Enhancing Chemical Stability of Electroplated Cu Films by Engineering Electrolyte Chemistry and Twinning Structure. Journal of Electronic Materials, 2015. 44: p. 2529-2535.
[54]. Skiba, N., Twin Deformation Mechanisms in Nanocrystalline and Ultrafine-Grained Materials, in Nanocrystals and Nanostructures. 2018, IntechOpen London, UK.
[55]. Brown, G. and G. Hope, SERS study of the adsorption of gelatin at a copper electrode in sulfuric acid solution. Journal of Electroanalytical Chemistry, 1995. 397(1-2): p. 293-300.
[56]. Fegan, K. The Chemistry of Gelatin. Available from: https://chembam.com/resources-for-students/the-chemistry-of/gelatin/.
[57]. Li, S., et al., Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition. Materials Science and Engineering: A, 2019. 758: p. 1-6.
[58]. Li, Z.-G., et al., Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate. Journal of Materials Science, 2022. 57(37): p. 17797-17811.
[59]. Sun, F.-L., et al., Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate. Journal of materials science & technology, 2018. 34(10): p. 1885-1890.
[60]. Chang, T., et al., Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta, 2016. 211: p. 245-254.
[61]. Liu, S.-H., et al., Roles of additives in damascene copper electropolishing. Journal of the Electrochemical Society, 2006. 153(6): p. C428.
[62]. Boedtker, H. and P. Doty, A study of gelatin molecules, aggregates and gels. The journal of physical chemistry, 1954. 58(11): p. 968-983.
[63]. Lu, L., et al., Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta materialia, 2005. 53(7): p. 2169-2179.
[64]. Shen, Y., et al., Tensile properties of copper with nano-scale twins. Scripta Materialia, 2005. 52(10): p. 989-994.
[65]. Chen, X., L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of applied physics, 2007. 102(8).
[66]. Cheng, H.-Y., et al., Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating. Materials Science and Engineering: A, 2021. 811: p. 141065.
[67]. Liu, S.-T., High-Speed Electrodeposition and Corresponding Electrochemical Analysis of Nanotwinned and Crystal Orientation-Controlled Copper Induced by Electroplating Additives, in 化學工程學系. 2022, 國立清華大學: 臺灣博碩士論文知識加值系統.
[68]. Lu, C.-L., et al., Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135-e135.
[69]. Kim, J. and H. Kim, Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide. Materials Chemistry and Physics, 2010. 120(2-3): p. 341-347.
[70]. Tseng, C.-H., et al., Kinetic study of grain growth in highly (111)-preferred nanotwinned copper films. Materials Characterization, 2020. 168: p. 110545.
[71]. Vitos, L., et al., The surface energy of metals. Surface science, 1998. 411(1-2): p. 186-202.
[72]. Skriver, H.L. and N. Rosengaard, Surface energy and work function of elemental metals. Physical Review B, 1992. 46(11): p. 7157.
[73]. Jian-Min, Z., M. Fei, and X. Ke-Wei, Calculation of the surface energy of FCC metals with modified embedded-atom method. Chinese Physics, 2004. 13(7): p. 1082.
[74]. Xu, L., et al., Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins. Applied physics letters, 2007. 90(3).
[75]. Kurapova, O.Y., et al., The microstructure and mechanical properties of twinned copper-bismuth films obtained by DC electrodeposition. Journal of Alloys and Compounds, 2021. 862: p. 158007.
[76]. Zhan, X., et al., Preparation of highly (111) textured nanotwinned copper by medium-frequency pulsed electrodeposition in an additive-free electrolyte. Electrochimica Acta, 2021. 365: p. 137391.
[77]. Zheng, Z., et al., Electrodeposition of (111)-oriented and nanotwin-doped nanocrystalline Cu with ultrahigh strength for 3D IC application. Nanotechnology, 2021. 32(22): p. 225702.
[78]. Shi, H., et al., Quantitative analysis of organic additives in acid copper plating solution. Chemical Physics Letters, 2023. 828: p. 140700.

(此全文20260128後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *