帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):溫浚崴
作者(外文):Wen, Chun-Wei
論文名稱(中文):以機器學習分析社群媒體上球隊認同感之研究
論文名稱(外文):Research of Team Identification in Social Media Based on Machine Learning
指導教授(中文):區國良
指導教授(外文):Ou, Kuo-Liang
口試委員(中文):唐文華
林秋斌
楊子奇
口試委員(外文):Tarng, Wern-Huar
Lin, Chiu-Pin
Yang, Tzu-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:學習科學與科技研究所
學號:110291518
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:74
中文關鍵詞:機器學習自然語言處理社群媒體球隊認同感球迷特性
外文關鍵詞:machine learningnatural language processingsocial mediateam identificationfan characteristics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
球隊認同感代表著球迷對於特定球隊實際上的感受,大部分的研究會透過問卷及量表進行評估,可能會遇到有些球迷隱藏自己的身份,誇大或虛答球隊的認同感,已獲得個人的利益,使用問卷量表將無法有效評估真實的球隊認同感;隨著社群媒體的崛起,球迷們現在擁有更多的機會在線上社交平台上與他們喜愛的球隊建立更密切的互動關係。這些互動活動產生的數據和信息提供了研究者 一個全新的管道,可以深入研究球迷的行為和情感 ,並進一步理解他們對於特定球隊的認同感。本論文嘗試將Branscombe and Wann(1992)所提出 的球隊認同感量表中的七個核心問題轉化為社群媒體上的數據指標,以反映球迷在線上的言論和互動。通過K-means機器學習的分群演算法,成功地識別出五種不同類型的球迷類型,這些類型具有不同的球迷特性。球團和體育組織可以通過利用社群媒體數據、文字探勘技術和情緒分析工具來評估球迷的對於球隊的認同感。分析結果可以幫助他們更好地了解球迷的需求、興趣和情感傾向,並能夠在不同的時間和事件情境下分析不同類型球迷特性和行為模式。最後依照球迷特性透過創建不同類型球迷機器人,讓球團更有效地進行預測受眾反映來制定粉絲互動策略,加強社群媒體上與球迷間的連結。
In the past, team identification was typically assessed and evaluated using scales. However, with the rise of social media, fans now have more opportunities to establish closer interactions with their favorite teams on online platforms. The data and information generated from these interactive activities present a unique opportunity to delve into the behaviors and emotions of fans, further enhancing our understanding of their sense of identification with specific sports teams.
This study attempts to transform the seven core questions from Branscombe and Wann's (1992) team identification scale into social media data indicators, reflecting fans' online statements and interactions. Using the K-means machine learning clustering algorithm, five different types of fan categories with distinct characteristics were successfully identified.Sports teams and organizations can assess fans' team identification by utilizing social media data, text mining techniques, and sentiment analysis tools. Analyzing these results can help them better understand the needs, interests, and emotional tendencies of fans and analyze different types of fan characteristics and behavior patterns in various times and event contexts.
Finally, by creating different types of fan bots based on fan characteristics, teams can more effectively predict audience reactions to formulate fan interaction strategies, strengthening the connection with fans on social media.
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究範圍與限制 5
第二章 文獻探討 6
2.1認同感與球隊認同感 6
2.2社群媒體 8
2.3機器學習與文字探勘 10
2.3.1 機器學習 10
2.3.2 K-means 演算法 11
2.3.3 文字探勘應用 12
2.4生成式語言模型 12
第三章 研究方法 15
3.1研究流程 15
3.2研究對象 15
3.3資料集 16
3.4資料前處理 17
3.4.1 資料清洗 17
3.4.2 特徵轉換 19
3.4.3 情緒模型標註 22
3.5 球隊認同感量表轉換 23
3.6 資料分析 25
3.7 建置球迷聊天機器人 25
第四章 研究分析與結果 28
4.1 K-Means 分群演算法結果 28
4.1.1 K值選擇 29
4.1.2 視覺化分群結果 29
4.1.3 不同類型球迷 31
4.2 不同類型球迷在社群媒體中的球迷特性 35
4.2.1 低認同感球迷的特性 36
4.2.2 中認同感球迷的特性 42
4.2.3 高認同感球迷的特性 47
4.2.4 有影響力的球迷的特性 49
4.2.5 高度參與的球迷的特性 51
4.3 不同類型的球迷聊天機器人 53
4.3.1 低認同感球迷的聊天機器人 53
4.3.2 中認同感球迷的聊天機器人 55
4.3.3 高認同感球迷的聊天機器人 58
4.3.4 有影響力球迷的聊天機器人 59
4.3.5 高度參與球迷的聊天機器人 61
第五章 研究結論與建議 64
附錄一 建置聊天機器人設定 67
參考文獻 70

Alzate, M., Arce-Urriza, M., & Cebollada, J. (2022). Mining the text of online consumer reviews to analyze brand image and brand positioning. Journal of Retailing and Consumer Services, 67, 102989. https://doi.org/10.1016/j.jretconser.2022.102989
Bandura, A. (1969). Social-learning theory of identificatory processes. Handbook of socialization theory and research, 213, 262.
Barbieri, F., Camacho-Collados, J., Espinosa-Anke, L., & Neves, L. (2020). TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification. https://doi.org/10.18653/v1/2020.findings-emnlp.148
Beech, J., Chadwick, S., & Tapp, A. (2000). Surrfng in the premier league: Key issues for football club marketers using the Internet. Managing Leisure, 5, 51-64. https://doi.org/10.1080/13606710050022511
Blaszka, M., Burch, L., Frederick, E., Clavio, G., & Walsh, P. (2012). WorldSeries: An empirical examination of a twitter hashtags during a major sport event. International Jounal of Sport Communication, 5, 435-453. https://doi.org/10.1123/ijsc.5.4.435
boyd, d., & Ellison, N. (2007). Social Network Sites: Definition, History, and Scholarship. J. Computer-Mediated Communication, 13, 210-230. https://doi.org/10.1111/j.1083-6101.2007.00393.x
Branscombe, N. R., & Wann, D. L. (1992). Role of identification with a group, arousal, categorization processes, and self-esteem in sports spectator aggression. Human Relations, 45(10), 1013-1033. https://doi.org/10.1177/001872679204501001
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei, D. (2020). Language models are few-shot learners Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada.
Clavio, G., & Kian, T. (2010). Uses and Gratifications of a Retired Female Athlete’s Twitter Followers. International Journal of Sport Communication, 3, 485-500. https://doi.org/10.1123/ijsc.3.4.485
Cunningham, N., & Eastin, M. (2015). Second Screen and Sports: A Structural Investigation Into Team Identification and Efficacy. Communication & Sport, 5. https://doi.org/10.1177/2167479515610152
Dutton, J. E., Dukerich, J. M., & Harquail, C. V. (1994). Organizational Images and Member Identification. Administrative Science Quarterly, 39(2), 239-263. https://doi.org/10.2307/2393235
Evans, D., & Smith, A. C. T. (2004). Internet sports marketing and competitive advantage for professional sports clubs: Bridging the gap between theory and practice. International Journal of Sports Marketing and Sponsorship, 6, 86-98. https://doi.org/10.1108/IJSMS-06-02-2004-B004
Filo, K., Lock, D., & Karg, A. (2015). Sport and social media research: A review. Sport Management Review, 18. https://doi.org/10.1016/j.smr.2014.11.001
Fink, J. S., Trail, G., & Anderson, D. F. (2002). An examination of team identification: Which motives are most salient to its existence? International Sports Journal, 6, 195-207.
Funk, D., & Filo, K. (2005). Congruence Between Attractive Product Features and Virtual Content Delivery for Internet Marketing Communication.
Funk, D., & James, J. (2006). Consumer Loyalty: The Meaning of Attachment in the Development of Sport Team Allegiance. Journal of Sport Management, 20, 189-217. https://doi.org/10.1123/jsm.20.2.189
Gibbs, C., O’Reilly, N., & Brunette, M. (2014). Professional Team Sport and Twitter: Gratifications Sought and Obtained by Followers. International Journal of Sport Communication, 7, 188-213. https://doi.org/10.1123/IJSC.2014-0005
Gong, X., & Lane, M. (2019). Institutional Twitter Usage among U.S. Geography Departments. The Professional Geographer, 72, 1-19. https://doi.org/10.1080/00330124.2019.1653770
Grönroos, C. (2004). The relationship marketing process: Communication, interaction, dialogue, value. The Journal of Business & Industrial Marketing, 19(2), 99. Journal of Business & Industrial Marketing, 19, 99-113. https://doi.org/10.1108/08858620410523981
Hambrick, M., Simmons, J., Greenhalgh, G., & Greenwell, C. (2010). Understanding Professional Athletes’ Use of Twitter: A Content Analysis of Athlete Tweets. International Journal of Sport Communication, 3, 454–471. https://doi.org/10.1123/ijsc.3.4.454
Hoffman, D., & Novak, T. (2012). Why Do People Use Social Media? Empirical Findings and a New Theoretical Framework for Social Media Goal Pursuit. SSRN Journal. https://doi.org/10.2139/ssrn.1989586
Hull, K. (2014). #Fight4UNCWSwimandDive: A Case Study of How College Athletes Used Twitter to Help Save Their Teams. International Journal of Sport Communication, 7, 533-552. https://doi.org/10.1123/IJSC.2014-0030
Jones, M., Coffee, P., Sheffield, D., Yanguez, M., & Barker, J. (2012). Just a game? Changes in English and Spanish soccer fans’ emotions in the 2010 World Cup. Psychology of Sport and Exercise - PSYCHOL SPORT EXERC. https://doi.org/10.1016/j.psychsport.2011.10.008
Kaplan, A., & Haenlein, M. (2010). Users of the World, Unite! The Challenges and Opportunities of Social Media. Business Horizons, 53, 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
Kasavana, M., Nusair, K., & Teodosic, K. (2010). Online social networking: Redefining the human web. Journal of Hospitality and Tourism Technology, 1, 68-82. https://doi.org/10.1108/17579881011023025
Knippenberg, D., & Schie, E. (2000). Foci and Correlates of Organizational Identification. Journal of Occupational and Organizational Psychology - J OCCUP ORGAN PSYCHOL, 73, 137-147. https://doi.org/10.1348/096317900166949
Kwon, H., & Trail, G. (2001). Sport fan motivation: A comparison of American students and international students. Sport Marketing Quarterly, 10, 147-155.
Macri, K. J. (2012). Not Just a Game: Sport and Society in the United States. Inquiries Journal, 4.
Mason, D. (1999). What is the sports product and who buys it? The marketing professional sports leagues. European Journal of Marketing - EUR J MARK, 33, 402-419. https://doi.org/10.1108/03090569910253251
Mersham, G. M., Theunissen, P., & Peart, J. G. M. (2009). Public Relations and Communication Management: An Aotearoa/New Zealand Perspective. Pearson. https://books.google.com.tw/books?id=r6skQwAACAAJ
Naseem, U., Razzak, I., Khushi, M., Eklund, P. W., & Kim, J. (2021). COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis. IEEE Transactions on Computational Social Systems, 8(4), 1003-1015. https://doi.org/10.1109/TCSS.2021.3051189
Pedersen, P. (2013). Reflections on Communication and Sport: On Strategic Communication and Management. Communication & Sport, 1, 55-67. https://doi.org/10.1177/2167479512466655
Radford, A., & Narasimhan, K. (2018). Improving Language Understanding by Generative Pre-Training.
Rane, A., & Kumar, A. (2018, 23-27 July 2018). Sentiment Classification System of Twitter Data for US Airline Service Analysis. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
Saffer, A. J., Sommerfeldt, E. J., & Taylor, M. (2013). The effects of organizational Twitter interactivity on organization–public relationships. Public Relations Review, 39(3), 213-215. https://doi.org/https://doi.org/10.1016/j.pubrev.2013.02.005
Semertzidis, K., Pitoura, E., & Tsaparas, P. (2013). How people describe themselves on Twitter. https://doi.org/10.1145/2484702.2484708
Stavros, C., Meng, M., Westberg, K., & Farrelly, F. (2014). Understanding fan motivation for interacting on social media. Sport Management Review, 17, 455-469. https://doi.org/10.1016/j.smr.2013.11.004
Sutton, W., McDonald, M. A., Milne, G., & Cimperman, J. (1997). Creating and Fostering Fan Identification in Professional Sports. Sport Marketing Quarterly, 6, 15-22.
Tapp, A., & Clowes, J. (2002). From “carefree casuals” to “professional wanderers”: Segmentation possibilities for football supporters. European Journal of Marketing, 36, 1248-1269. https://doi.org/10.1108/03090560210445164
Wallace, L., Wilson, J., & Miloch, K. (2011). Sporting Facebook: A Content Analysis of NCAA Organizational Sport Pages and Big 12 Conference Athletic Department Pages. International Journal of Sport Communication, 4. https://doi.org/10.1123/ijsc.4.4.422
Wann, D. L., & Branscombe, N. R. (1993). Sports fans: Measuring degree of identification with their team. International Journal of Sport Psychology, 24, 1-17.
Waters, R., Burke, Jackson, & Buning. (2011). Using stewardship to cultivate fandom online: Comparing how NFL teams use their websites and Facebook to engage their fans.
Waters, R. D., & Lo, K. D. (2012). Exploring the Impact of Culture in the Social Media Sphere: A Content Analysis of Nonprofit Organizations’ Use of Facebook. Journal of Intercultural Communication Research, 41(3), 297-319. https://doi.org/10.1080/17475759.2012.728772
Williams, J., & Chinn, S. (2010). Meeting Relationship-Marketing Goals Through Social Media: A Conceptual Model for Sport Marketers. International Journal of Sport Communication, 3, 422-437. https://doi.org/10.1123/ijsc.3.4.422
Yu, Y., & Wang, X. (2015). World Cup 2014 in the Twitter World: A big data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior, 48. https://doi.org/10.1016/j.chb.2015.01.075
Zadeh, A. (2021). Quantifying fan engagement in sports using text analytics. Journal of Data, Information and Management, 3. https://doi.org/10.1007/s42488-021-00052-4
Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q., He, L., Peng, H., Li, J., Wu, J., Liu, Z., Xie, P., Xiong, C., Pei, J., Yu, P. S., University, L. S. M. S., . . . Research, S. A. (2023). A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. ArXiv, abs/2302.09419.
(此全文20290123後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *