|
1. 王子華(2019)。「清華 STEAM 學校」之 DDMT 教學模式的建構。科學教育實作學門電子期刊,17。https://esep.colife.org.tw/journal_pdf/325.pdf 2. 王子華、林紀慧 (2018)。「清華 STEAM 學校」推動創新數理人才在地培育機制。科學教育實作學門電子期刊,12。https://esep.colife.org.tw/12/journal 3. 王明慧、柳 賢、洪振方(2005) 。高一學生在解題歷程中的數學建模之分析,屏東教育大學 學報第二時四期。 4. 吳明隆、涂金堂(2012)。 SPSS 與統計應用分析 (二版)。臺北市: 五南。 5. 李祥宇(2012)。數學建模教學對於高中生學習成效的影響之研究-以排列、組合為例。國立高雄師範大學。 6. 李默英(1983)。性別、年級、數學科學習態度、性別角色與數學成就之關係(末出版之碩士論文)。國立政治大學,台北市。 7. 汪瑞芝、廖玲珠 (2008)。 會計習作課程之學習行為與學習成效。 當代會計, 9(1),105-130。 http://doi.org/10.6675/JCA.2008.9.1.04 8. 周玉秀(2006)。從PISA 看數學素養與中小學數學教育。科學教育月刊,293,2-21。 http://doi.org/10.6216/SEM.200610_(293).0001 9. 林碧珍(2020)。素養導向評量的「真實」情境?是對解題者?還是對情境本身?央團一、二月數學月刊,第十五期https://cirn.moe.edu.tw/Upload/file/33396/86485.pdf 10. 姜啟源(2001)。數學實驗與數學建模 (Doctoral dissertation)。 11. 清華STEAM學校(2018年6月8日)。「清華STEAM學校」理念。https://tsinghuasteam.org/ 12. 陳冠州(2008)。數學建模活動下國小五年級學生代數思考及其發展歷程之研究。國立彰化師範大學。 13. 黃志賢 (2014)。 數學建模-社會文化與集體論證的觀點。 科學教育學刊,22(3), 237-258。 http://doi.org/10.6173/CJSE.2014.2203.01 14. 凱琳、林福來 (2006)。探討高中數學教學融入建模活動的支撐策略及促進參與教師反思的潛在機制。 科學教育學刊, 14(5), 517-543。 http://doi.org/10.6173/CJSE.2006.1405.02 15. 楊凱琳、林福來、蕭志如(2012)。數學建模評量規準之研究。科學教育學刊,20(4),319-342。 http://doi.org/10.6173/CJSE.2012.2004.02 16. 趙慧臣、陸曉婷(2016)。開展STEAM教育提高學生創新能力——訪美國STEAM教育知名學者格雷特·亞克門教授。開放教育研究,22(5), 5-6。 17. 蔡華華、張雅萍 (2007)。 學習動機對學習成效之影響-以領導行為為干擾變數。 中華管理學報,8(4),1-17。 http://doi.org/10.30053/CHJM.200712.0001
18. Adams, R. S.,&Forin,T.(2014). Working to gether across disciplines. Engineering Practice in a Global Context, 101-27. http://doi.org/10.1201/b15792-10
19. Aiken, L. R., & Groth-Marnat, G. (2006). Psychological testing and assessment 12th ed.
20. Berland, L., Steingut, R., & Ko, P. (2014). High school student perceptions of the utility of the engineering design process: Creating opportunities to engage in engineering practices and apply math and science content. Journal of Science Education and Technology, 23(6), 705-720. http://doi.org/10.1007/s10956-014-9498-4
21. Bloom, B. S. (1994). Reflections on the development and use of the taxonomy. Yearbook: National Society for the Study of Education, 92(2), 1-8.
22. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of mathematical modelling and application, 1(1), 45-58.
23. Blum, W., & Leiss, D. (2005). “Filling Up“-the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In CERME 4–Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1623-1633). Sant Feliu de Guíxois: FUNDEMI IQS–Universitat.
24. Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Sage publications.
25. Csikszentmihalyi, M. (2000). Beyond boredom and anxiety (25. Anniversary ed.). San Francisco: Jossey-Bass Publishers.
26. Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. ASCD.
27. Erbas, A. K., Kertil, M., Çetinkaya, B., Cakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621-1627. http://doi.org/10.12738/estp.2014.4.2039
28. Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95. http://doi.org/10.1007/BF02655883
29. Fennema, E. & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization, and affective factors. American Educatioal Research Journal, 14(1), 51-71. http://doi.org/10.3102/00028312014001051
30. Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education, 7(1), 1-14. http://doi.org/10.1186/s40594-020-00225-4
31. Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud. Einstein. Picasso. Stravinsky. Eliot. Graham, and Gandhi. Basic Books. Gl_aveanu, V. P. (2010). Paradigms
32. Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487
33. Haines, C., & Crouch, R. (2007). Mathematical and applications: Ability and competence frameworks. In W. Blum, P. L. Galbraith, H. W. Henn & M. Niss (Eds.), Modeling and applications in mathematics education, the 14th ICMI study (pp. 417-424). New York: Springer.
34. Hoi, H. T. (2021). Applying STEAM Teaching Method to Primary Schools to Improve the Quality of Teaching and Learning for Children. International Journal of Early Childhood Special Education, 13(2). http://doi.org/10.9756/INT-JECSE/V13I2.211149
35. Hsiao, P. W., & Su, C. H. (2021). A study on the impact of STEAM education for sustainable development courses and its effects on student motivation and learning. Sustainability, 13(7), 3772. http://doi.org/10.3390/su13073772
36. Kehle, P. E. & Lester, F. K. (2003). A Semiotic Look and Modeling Behavior. In R. A. Lesh (Ed.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 97-122). Mahwah: Lawrence Erlbaum Associates.
37. Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552. http://doi.org/10.1016/j.procs.2013.09.317
38. Lanzing, J. W. A., & Stanchev, I. (1994). Visual aspects of courseware engineering. Journal of Computer Assisted Learning, 10(2), 69-80. http://doi.org/10.1111/j.1365-2729.1994.tb00284.x Lehrer, R., & Schauble, L. (2003). Origins and evolution of model-based reasoning in mathematics and science. Beyond constructivism:Models and modeling perspectives on mathematics problem solving, learning, and teaching, 59-70.
39. Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Routledge.
40. Lesh, R., Post, T. & Behr M. (1987). Representations and translations among representations in mathematics learning and problem solving. Problems of representation in the teaching and learning of mathematics (pp 33-40). Hillsdale, NJ: Lawrence Erlbaum.
41. Linder, S. M., Emerson, A. M., Heffron, B., Shevlin, E. & Vest, A. (2016). STEM use in early childhood education: Viewpoints from the field. YC Young Children, 71(3), 87–91.
42. Little, C., & Jones, K. (2010). The effect of using real world contexts in post-16 mathematics questions. Proceedings of the British Society for Research into Learning Mathematics, 30(1), 137-144.
43. Lu, S. Y., Lo, C. C., & Syu, J. Y. (2021). Project-based learning oriented STEAM: The case of micro–bit paper-cutting lamp. International Journal of Technology and Design Education, 1-23. http://doi.org/10.1007/s10798-021-09714-1
44. Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. Journal for Research in Mathematics Education, 30(5), 520-540. doi: 10.2307/749772 http://doi.org/10.2307/749772
45. Maki, D. P., & Thompson, M. (1973). Mathematical models and applications: With emphasis on the social, life, and management sciences. Englewood Cliffs, NJ: Prentice-Hall.
46. Mavri, A., Ioannou, A., & Loizides, F. (2020b). Design students meet industry players: Feedback and creativity in communities of practice. Thinking Skills and Creativity, 37, 100684. http://doi.org/10.1016/j.tsc.2020.100684
47. Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of conceptual frameworks and definitions. In Handbook of research on STEM education (pp. 3-16). Routledge.
48. Mousoulides, N., Sriraman, B. H. A. R. A. T. H., & Christou, C. O. N. S. T. A. N. T. I. N. O. S. (2007). From problem solving to modelling. Education, 12(1), 23-47.
49. Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. Paper presented at the 3rd Mediterranean conference on mathematical education.
50. Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School science and mathematics, 117(1-2), 1-12. http://doi.org/10.1111/ssm.12201
51. Rodriguez, A. J. (1997). The dangerous discourse of invisibility: A critique of the National Research Council's National Science Education Standards. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(1), 19-37. http://doi.org/10.1002/(SICI)1098-2736(199701)34:1<19::AID-TEA3>3.0.CO;2-R
52. Satchwell, R.E., & Loepp, F.L. (2002). Designing and Implementing an Integrated Mathematics, Science, and Technology Curriculum for the Middle School. Journal of Industrial Teacher Education, 39, 41-66.
53. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). Macmillan. http://doi.org/10.1177/002205741619600202
54. Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
55. Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2. http://doi.org/10.20897/ejsteme/85525
56. Thuneberg, H. M., Salmi, H. S., & Bogner, F. X. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. http://doi.org/10.1016/j.tsc.2018.07.003
57. Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: A guide for educators. National Research Center on the Gifted and Talented. Retrieved June 1, 2020.
58. Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical modeling of school word problems. In K. P. Gravemeijer, R. Lehrer,H. J. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 171-195). Dordrecht, The Netherlands: Kluwer Academic Publishers. http://doi.org/10.1007/978-94-017-3194-2_16
59. Wahyuningsih, S., Nurjanah, N. E., Rasmani, U. E. E., Hafidah, R., Pudyaningtyas, A. R., & Syamsuddin, M. M. (2020). STEAM learning in early childhood education: A literature review. International Journal of Pedagogy and Teacher Education, 4(1), 33-44. http://doi.org/10.20961/ijpte.v4i1.39855
60. White, D. W.(2014). What is STEM education and why is it important. Florida Association of Teacher Educators Journal, 1(14), 1-9.
61. Wu, C. H., Liu, C. H., & Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1), 1-22. http://doi.org/10.1186/s40594-022-00346-y
62. Yakman, G. (2008). STEAM education. An overview of creation a model of integrative education. PATT.
63. Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7(9), 1-9.
|