|
1. 衛生福利部統計資料. 111 年死因統計結果分析. https://www.mohw.gov.tw/dl-83733-80fb9ab8-ea2d-4e3e-ba06-f70f28aca036.html 2. 2022年全民健康保險醫療費用前二十大疾病. 2023. 3. https://www.cancer.gov/about-cancer/treatment/types/surgery 4. 何謂放射治療?化學治療? 臺大醫院健康電子報 2016, (108) 5. https://www.cancer.gov/about-cancer/treatment/types/chemotherapy 6. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy 7. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies 8. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy 9. https://helloyishi.com.tw/cancer/all-you-need-to-know-about-cancer-immunotherapy/ 10. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors 11. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy. 12. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/cancer-treatment-vaccines. 13. Dance, M.; Montagner, A.; Salles, J. P.; Yart, A.; Raynal, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular Signalling 2008, 20 (3), 453-459. DOI: 10.1016/j.cellsig.2007.10.002 From NLM Medline. 14. Mohi, M. G.; Neel, B. G. The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 2007, 17 (1), 23-30. DOI: 10.1016/j.gde.2006.12.011 From NLM Medline. 15. Yuan, X.; Bu, H.; Zhou, J.; Yang, C. Y.; Zhang, H. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. J Med Chem 2020, 63 (20), 11368-11396. DOI: 10.1021/acs.jmedchem.0c00249 From NLM Medline. 16. Tate, J. G.; Bamford, S.; Jubb, H. C.; Sondka, Z.; Beare, D. M.; Bindal, N.; Boutselakis, H.; Cole, C. G.; Creatore, C.; Dawson, E.; et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019, 47 (D1), D941-D947. DOI: 10.1093/nar/gky1015 From NLM Medline. 17. Liu, M.; Gao, S.; Elhassan, R. M.; Hou, X.; Fang, H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021, 11 (12), 3908-3924. DOI: 10.1016/j.apsb.2021.03.037 From NLM PubMed-not-MEDLINE. 18. Zhang, J.; Zhang, F.; Niu, R. Functions of Shp2 in cancer. J Cell Mol Med 2015, 19 (9), 2075-2083. DOI: 10.1111/jcmm.12618 From NLM Medline. 19. Maertens, O.; Cichowski, K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014, 55, 1-14. DOI: 10.1016/j.jbior.2014.04.002 From NLM Medline. 20. Ren, Y.; Meng, S.; Mei, L.; Zhao, Z. J.; Jove, R.; Wu, J. Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J Biol Chem 2004, 279 (9), 8497-8505. DOI: 10.1074/jbc.M312575200 From NLM Medline. 21. Yuan, Y.; Fan, Y.; Gao, Z.; Sun, X.; Zhang, H.; Wang, Z.; Cui, Y.; Song, W.; Wang, Z.; Zhang, F.; Niu, R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med 2020, 17 (3), 707-725. DOI: 10.20892/j.issn.2095-3941.2020.0056 From NLM Medline. 22. Zehender, A.; Huang, J.; Gyorfi, A. H.; Matei, A. E.; Trinh-Minh, T.; Xu, X.; Li, Y. N.; Chen, C. W.; Lin, J.; Dees, C.; et al. The tyrosine phosphatase SHP2 controls TGFbeta-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun 2018, 9 (1), 1-17. DOI: 10.1038/s41467-018-05768-3 From NLM Medline. 23. (Axelrod, M. L.; Cook, R. S.; Johnson, D. B.; Balko, J. M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019, 25 (8), 2392-2402. DOI: 10.1158/1078-0432.CCR-18-3200 From NLM Medline. 24. Dong, L.; Han, D.; Meng, X.; Xu, M.; Zheng, C.; Xia, Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021, 9, 630712. DOI: 10.3389/fcell.2021.630712 From NLM PubMed-not-MEDLINE. 25. Tsutsumi, R.; Masoudi, M.; Takahashi, A.; Fujii, Y.; Hayashi, T.; Kikuchi, I.; Satou, Y.; Taira, M.; Hatakeyama, M. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell 2013, 26 (6), 658-665. DOI: 10.1016/j.devcel.2013.08.013 From NLM Medline. 26. Chughtai, N.; Schimchowitsch, S.; Lebrun, J. J.; Ali, S. Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem 2002, 277 (34), 31107-31114. DOI: 10.1074/jbc.M200156200 From NLM Medline. 27. Jakob, S.; Schroeder, P.; Lukosz, M.; Buchner, N.; Spyridopoulos, I.; Altschmied, J.; Haendeler, J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 2008, 283 (48), 33155-33161. DOI: 10.1074/jbc.M805138200 From NLM Medline. 28. Bernardes de Jesus, B.; Blasco, M. A. Telomerase at the intersection of cancer and aging. Trends Genet 2013, 29 (9), 513-520. DOI: 10.1016/j.tig.2013.06.007 From NLM Medline. 29. Chen, W.; Han, C.; Xie, B.; Hu, X.; Yu, Q.; Shi, L.; Wang, Q.; Li, D.; Wang, J.; Zheng, P.; et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 2013, 152 (3), 467-478. DOI: 10.1016/j.cell.2013.01.011 From NLM Medline. 30. Asmamaw, M. D.; Shi, X. J.; Zhang, L. R.; Liu, H. M. A comprehensive review of SHP2 and its role in cancer. Cell Oncol (Dordr) 2022, 45 (5), 729-753. DOI: 10.1007/s13402-022-00698-1 From NLM Medline. 31. Yu, J.; Deng, R.; Zhu, H. H.; Zhang, S. S.; Zhu, C.; Montminy, M.; Davis, R.; Feng, G. S. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem 2013, 288 (6), 3823-3830. DOI: 10.1074/jbc.M112.397885 From NLM Medline. 32. Okur, M. N.; Ooi, J.; Fong, C. W.; Martinez, N.; Garcia-Dominguez, C.; Rojas, J. M.; Guy, G.; O'Bryan, J. P. Intersectin 1 enhances Cbl ubiquitylation of epidermal growth factor receptor through regulation of Sprouty2-Cbl interaction. Mol Cell Biol 2012, 32 (4), 817-825. DOI: 10.1128/MCB.05647-11 From NLM Medline. 33. Yu, Z. H.; Xu, J.; Walls, C. D.; Chen, L.; Zhang, S.; Zhang, R.; Wu, L.; Wang, L.; Liu, S.; Zhang, Z. Y. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 2013, 288 (15), 10472-10482. DOI: 10.1074/jbc.M113.450023 From NLM Medline. 34. Brandao, T. A.; Johnson, S. J.; Hengge, A. C. The molecular details of WPD-loop movement differ in the protein-tyrosine phosphatases YopH and PTP1B. Arch Biochem Biophys 2012, 525 (1), 53-59. DOI: 10.1016/j.abb.2012.06.002 From NLM Medline. 35. Padua, R. A. P.; Sun, Y.; Marko, I.; Pitsawong, W.; Stiller, J. B.; Otten, R.; Kern, D. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat Commun 2018, 9 (1), 4507. DOI: 10.1038/s41467-018-06814-w From NLM Medline. 36. Anselmi, M.; Hub, J. S. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Sci Rep 2020, 10 (1), 18530. DOI: 10.1038/s41598-020-75409-7 From NLM Medline. 37. Mi, D.; Li, Y.; Chen, Y. Small-molecule Modulators Targeting SHP2 for Cancer Therapy. Anticancer Agents Med Chem 2023, 23 (5), 498-504. DOI: 10.2174/1871520622666220921093052 From NLM Medline. 38. Song, Y.; Wang, S.; Zhao, M.; Yang, X.; Yu, B. Strategies Targeting Protein Tyrosine Phosphatase SHP2 for Cancer Therapy. J Med Chem 2022, 65 (4), 3066-3079. DOI: 10.1021/acs.jmedchem.1c02008 From NLM Medline. 39. Varone, A.; Spano, D.; Corda, D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020, 10, 935. DOI: 10.3389/fonc.2020.00935 From NLM PubMed-not-MEDLINE. 40. Alicea-Velazquez, N. L.; Jakoncic, J.; Boggon, T. J. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. J Struct Biol 2013, 181 (3), 243-251. DOI: 10.1016/j.jsb.2012.12.009 From NLM Medline. 41. Chen, Y. N.; LaMarche, M. J.; Chan, H. M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M. G.; Antonakos, B.; Chen, C. H.; Chen, Z.; Cooke, V. G.; et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016, 535 (7610), 148-152. DOI: 10.1038/nature18621 From NLM Medline. 42. Koczywas, M.; Haura, E.; Janne, P. A.; Pacheco, J. M.; Ulahannan, S.; Wang, J. S.; Burris, H. A.; Riess, J. W.; McCoach, C.; Gordon, M. S.; et al. Abstract LB001: Anti-tumor activity and tolerability of the SHP2 inhibitor RMC-4630 as a single agent in patients with RAS-addicted solid cancers. Cancer Research 2021, 81 (13_Supplement), LB001-LB001. DOI: 10.1158/1538-7445.Am2021-lb001. 43. Johnson, M. L.; Langdon, R.; Ellison, D.; Spira, A.; Amin, H.; Castine, M.; Daniel, D.; Larson, T.; Sohoni, S.; Chen, Y. C.; et al. EP08.02-111 RMC-4630, a SHP2 Inhibitor, in Combination with Sotorasib for Advanced KRASG12C NSCLC After Failure of Prior Standard Therapies: A Phase 2 Trial. Journal of Thoracic Oncology 2022, 17 (9), S454-S455. DOI: 10.1016/j.jtho.2022.07.794. 44. Safety and Efficacy Study of SAR442720 in Combination With Other Agents in Advanced Malignancies. DOI: https://clinicaltrials.gov/study/NCT04418661. 45. Dose-Esc/Exp RMC4630 & Cobi in Relapsed/Refractory Solid Tumors & RMC4630& Osi in EGFR+ Locally Adv/Meta NSCLC. 46. A Dose Escalation/Expansion Study of ERAS-601 in Patients With Advanced or Metastatic Solid Tumors (FLAGSHP-1). 47. A Study of Anti-Cancer Therapies Targeting the MAPK Pathway in Patients With Hematologic Malignancies (HERKULES-4). 48. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=676318. 49. JAB-3068 Activity in Adult Patients With Advanced Solid Tumors. 50. JAB-3312 Based Combination Therapy in Adult Patients With Advanced Solid Tumors. 51. Brana, I.; Shapiro, G.; Johnson, M. L.; Yu, H. A.; Robbrecht, D.; Tan, D. S.-W.; Siu, L. L.; Minami, H.; Steeghs, N.; Hengelage, T.; et al. Initial results from a dose finding study of TNO155, a SHP2 inhibitor, in adults with advanced solid tumors. Journal of Clinical Oncology 2021, 39 (15_suppl), 3005-3005. DOI: 10.1200/JCO.2021.39.15_suppl.3005. 52. Study of JDQ443 in Patients With Advanced Solid Tumors Harboring the KRAS G12C Mutation (KontRASt-01). 53. Drilon, A. E.; Johnson, M. L.; Gadgeel, S. M.; Nepert, D.; Feng, G.; Golmakani, M.; Reddy, M.; Harney, A.; Oliver, C.; Mills, B.; et al. A first-in-human, phase 1 study of the SHP2 inhibitor PF-07284892 as monotherapy and in combination with different targeted therapies in oncogene-driven, treatment-resistant solid tumors. Journal of Clinical Oncology 2023, 41 (16_suppl), 3020-3020. DOI: 10.1200/JCO.2023.41.16_suppl.3020. 54. LaMarche, M. J.; Acker, M.; Argintaru, A.; Bauer, D.; Boisclair, J.; Chan, H.; Chen, C. H.; Chen, Y. N.; Chen, Z.; Deng, Z.; et al. Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. J Med Chem 2020, 63 (22), 13578-13594. DOI: 10.1021/acs.jmedchem.0c01170 From NLM Medline. 55. Cartwright, I. L.; Hutchinson, D. W.; Armstrong, V. W. The reaction between thiols and 8-azidoadenosine derivatives. Nucleic Acids Res 1976, 3 (9), 2331-2339. DOI: 10.1093/nar/3.9.2331 From NLM Medline. 56. Suzenet, F.; Sirbu, D.; Guillaumet, G.; Bonnet, P. Polynitrogen compounds and uses thereof as fluorescent chromophores. Google Patents: 2021. 57. Xia, Y.; Li, W.; Qu, F.; Fan, Z.; Liu, X.; Berro, C.; Rauzy, E.; Peng, L. Synthesis of bitriazolyl nucleosides and unexpectedly different reactivity of azidotriazole nucleoside isomers in the Huisgen reaction. Org Biomol Chem 2007, 5 (11), 1695-1701. DOI: 10.1039/b703420b From NLM Medline. 58. Donnelly, P. S.; Zanatta, S. D.; Zammit, S. C.; White, J. M.; Williams, S. J. 'Click' cycloaddition catalysts: copper(I) and copper(II) tris(triazolylmethyl)amine complexes. Chem Commun (Camb) 2008, (21), 2459-2461. DOI: 10.1039/b719724a From NLM Medline. 59. Lamberth, C. First Synthesis of 3-Amino-2-arylimidazo[1,2-b]pyridazines by Groebke-Blackburn Reaction. Synlett 2011, 2011 (12), 1740-1744. DOI: 10.1055/s-0030-1260940. 60. Boltjes, A.; Domling, A. The Groebke-Blackburn-Bienayme Reaction. Eur J Chem 2019, 2019 (42), 7007-7049. DOI: 10.1002/ejoc.201901124 From NLM PubMed-not-MEDLINE. 61. Krasavin, M.; Dar'in, D.; Balalaie, S. Post-condensational modifications of the Groebke‐Blackburn‐Bienaymé reaction products for scaffold-oriented synthesis. Tetrahedron Letters 2021, 86. DOI: 10.1016/j.tetlet.2021.153521. 62. Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Sandulenko, Y.; Bukhryakov, K. tert-Butyl isocyanide revisited as a convertible reagent in the Groebke–Blackburn reaction. Tetrahedron Letters 2008, 49 (51), 7318-7321. DOI: 10.1016/j.tetlet.2008.10.046. 63. Xu, M.; Zhang, X. H.; Zhong, P. Iron-Catalyzed Direct Sulfenylation and Selenylations of Phenylpyrazoles: Synthesis of Fipronil Derivatives with Disulfides Promoted by a Catalytic Amount of Iodine. Synthetic Communications 2012, 42 (23), 3472-3481. DOI: 10.1080/00397911.2011.584262. 64. Wu, S. S.; Feng, C. T.; Hu, D.; Huang, Y. K.; Li, Z.; Luo, Z. G.; Ma, S. T. Iodine-catalyzed direct C-H thiolation of imidazo[1,5-a]quinolines for the synthesis of 3-sulfenylimidazo[1,5-a]quinolines. Org Biomol Chem 2017, 15 (7), 1680-1685. DOI: 10.1039/c6ob02736a From NLM Medline. 65. Thomann, A.; Zapp, J.; Hutter, M.; Empting, M.; Hartmann, R. W. Steering the azido-tetrazole equilibrium of 4-azidopyrimidines via substituent variation - implications for drug design and azide-alkyne cycloadditions. Org Biomol Chem 2015, 13 (43), 10620-10630. DOI: 10.1039/c5ob01006c From NLM Medline. 66. Le Manach, C.; Paquet, T.; Gonzalez Cabrera, D.; Younis, Y.; Taylor, D.; Wiesner, L.; Lawrence, N.; Schwager, S.; Waterson, D.; Witty, M. J.; et al. Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a softfocus kinase library: part 2. J Med Chem 2014, 57 (21), 8839-8848. DOI: 10.1021/jm500887k From NLM Medline. 67. Gatarz, S. E.; Griffiths, O. M.; Esteves, H. A.; Jiao, W.; Morse, P.; Fisher, E. L.; Blakemore, D. C.; Ley, S. V. Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. J Org Chem 2024, 89 (3), 1898-1909. DOI: 10.1021/acs.joc.3c02557 From NLM PubMed-not-MEDLINE. 68. Terme, T.; Maldonado, J.; Crozet, M. P.; Vanelle, P.; Galtier, C.; Gueiffier, A. Synthesis of 2‐substituted‐3‐nitroimidazo[1,2‐b]pyridazines as potential biologically active agents. Journal of Heterocyclic Chemistry 2009, 39 (1), 173-177. DOI: 10.1002/jhet.5570390125.
|