帳號:guest(3.145.188.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃星皓
作者(外文):Huang, Hsing-Hao
論文名稱(中文):嘧啶、吡嗪和咪唑並[1,2-b]噠嗪化合物的設計、合成與SHP2抑制效果探討
論文名稱(外文):Design, Synthesis, and SHP2 Inhibition Study of Pyrimidines, Pyrazines and Imidazo[1,2-b]pyridazines
指導教授(中文):李靜琪
蘇士哲
指導教授(外文):Lee, Jinq-Chyi
Sue, Shih-Che
口試委員(中文):俞鐘山
翁紹華
口試委員(外文):Yu, Chung-Shan
Ueng, Shau-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:110080603
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:306
中文關鍵詞:嘧啶吡嗪咪唑並[1,2-b]噠嗪
外文關鍵詞:PyrimidinePyrazineImidazo[1,2-b]pyridazineSHP2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症是全球疾病和死亡的主要原因之一,儘管目前已有多種治療方式和藥物,臨床上仍面臨許多挑戰;因此研發與目前藥物具不同作用機轉的抗癌新藥實有其必要性,而與多種惡性腫瘤的發生發展具密切關係的致癌性蛋白酪胺酸磷酸酶SHP2即成為我們的目標。在本研究中,我們依序透過小分子資料庫篩選、循理性藥物設計以及核心結構虛擬篩選進行SHP2抑制劑的研發工作,共設計合成嘧啶、吡嗪和咪唑並[1,2-b]噠嗪等三個系列化合物,並探討它們對SHP2的抑制能力。活性評估結果顯示,具2-苯基-咪唑並[1,2-b]噠嗪骨架的化合物38和79有較佳的抑制效果。
Cancer has been a major health burden and is one of the leading causes of death worldwide. Given the growing number of anticancer drugs on the market, there are still clinical challenges that need to be addressed. Therefore, development of novel molecules with new modes of action for cancer treatment is required, and the protein tyrosine phosphatase SHP2, closely related to the occurrence and development of various malignant tumors, is one such promising strategy. In this study, we sequentially performed the discovery of SHP2 inhibitors through the screening of a small compound library, rational drug design, and the virtual screening of core structures. Based on the results obtained, three series of compounds including pyrimidine, pyrazine, and imidazo[1,2-b]pyridazine were designed and synthesized, and their inhibition against SHP2 was evaluated. The results of activity evaluation indicated that compounds 38 and 79, bearing the 2-phenyl-imidazo[1,2-b]pyridazine scaffold, exhibited better inhibitory effects.
摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 XVI
表目錄 XIX
流程目錄 XX
縮寫對照表 XXI
第一章、緒論 1
1.1 癌症的威脅與治療困境 1
1.1.1 手術治療(Surgery) 1
1.1.2 化學治療(Chemotherapy) 2
1.1.3 放射治療(Radiotherapy) 2
1.1.4 標靶治療(Targeted Therapy) 3
1.1.5 免疫療法(Immunotherapy) 4
1.2 具Src同源區2結構域的蛋白酪胺酸磷酸酶2 (Src Homology
Region 2 Domain-Containing Phosphatase-2)之生理功能 6
1.2.1 SHP2訊號調控路徑 8
1.2.2 細胞核內的SHP2 11
1.2.3 SHP2的泛素化作用 12
1.3 SHP2的結構及活性調節 12
1.4 SHP2抑制劑的發展 14
第二章、結果與討論 22
2.1 SHP2的抑制活性實驗 22
2.2 嘧啶系列SHP2抑制劑 23
2.2.1 嘧啶-哌啶化合物2的合成 25
2.2.2 嘧啶-三唑化合物3–6的合成 26
2.2.3 嘧啶系列化合物2–6對SHP2的抑制能力 27
2.3 吡嗪系列SHP2抑制劑 29
2.3.1 吡嗪系列化合物27–31的合成 30
2.3.2 吡嗪系列化合物27–31對SHP2的抑制能力 33
2.4 咪唑並[1,2-b]噠嗪系列SHP2抑制劑 34
2.4.1 2-苯基-咪唑並[1,2-b]噠嗪系列化合物的合成 37
2.4.2 2-苯基-咪唑並[1,2-b]噠嗪系列化合物對SHP2的抑制能力 47
2.4.3 2-苯硫基-咪唑並[1,2-b]噠嗪系列化合物的合成 49
2.4.4 2-苯硫基-咪唑並[1,2-b]噠嗪系列化合物對SHP2的抑制能
力 55
2.4.5 2-苯基-咪唑並[1,2-b]噠嗪化合物38的衍生物 56
2.4.6 2-苯基-咪唑並[1,2-b]噠嗪化合物73、75和79-81對SHP2
的抑制能力 57
第三章、總結 59
第四章、實驗部分 61
4.1 一般實驗方法 61
4.2 SHP2的抑制活性實驗 63
4.3 化合物之實驗步驟與光譜資料 64
4.3.1 化合物2合成 64
4.3.2 化合物3合成 65
4.3.3 化合物4合成 66
4.3.4 化合物5合成 67
4.3.5 化合物6合成 68
4.3.6 化合物8合成 69
4.3.7 化合物9合成 70
4.3.8 化合物10合成 71
4.3.9 化合物11合成 71
4.3.10 化合物12合成 72
4.3.11 化合物13合成 73
4.3.12 化合物14合成 74
4.3.13 化合物15合成 74
4.3.14 化合物17合成 75
4.3.15 化合物18合成 76
4.3.16 化合物19合成 77
4.3.17 化合物20合成 77
4.3.18 化合物21合成 78
4.3.19 化合物22合成 79
4.3.20 化合物23合成 80
4.3.21 化合物24合成 80
4.3.22 化合物25合成 81
4.3.23 化合物26合成 82
4.3.24 化合物27合成 83
4.3.25 化合物28合成 83
4.3.26 化合物29合成 84
4.3.27 化合物30合成 85
4.3.28 化合物31合成 86
4.3.29 化合物32合成 87
4.3.30 化合物33合成 88
4.3.31 化合物36a合成 89
4.3.32 化合物36b合成 90
4.3.33 化合物36c合成 91
4.3.34 化合物36d合成 91
4.3.35 化合物36e合成 92
4.3.36 化合物36f合成 93
4.3.37 化合物36g合成 94
4.3.38 化合物37a合成 94
4.3.39 化合物37b合成 95
4.3.40 化合物37c合成 96
4.3.41 化合物37d合成 97
4.3.42 化合物37e合成 98
4.3.43 化合物37f合成 98
4.3.44 化合物37g合成 99
4.3.45 化合物37h合成 100
4.3.46 化合物37i合成 101
4.3.47 化合物37j合成 102
4.3.48 化合物37k合成 102
4.3.49 化合物37l合成 103
4.3.50 化合物38合成 104
4.3.51 化合物39合成 105
4.3.52 化合物40合成 106
4.3.53 化合物41合成 107
4.3.54 化合物42合成 108
4.3.55 化合物43合成 109
4.3.56 化合物44合成 110
4.3.57 化合物45合成 111
4.3.58 化合物46合成 112
4.3.59 化合物47合成 113
4.3.60 化合物48合成 114
4.3.61 化合物49合成 115
4.3.62 化合物50合成 116
4.3.63 化合物52合成 117
4.3.64 化合物53合成 117
4.3.65 化合物54合成 118
4.3.66 化合物55合成 119
4.3.67 化合物56合成 120
4.3.68 化合物57合成 121
4.3.69 化合物59合成 122
4.3.70 化合物60合成 122
4.3.71 化合物61a合成 123
4.3.72 化合物61b合成 124
4.3.73 化合物61c合成 125
4.3.74 化合物61d合成 126
4.3.75 化合物62a合成 126
4.3.76 化合物62b合成 127
4.3.77 化合物62c合成 128
4.3.78 化合物63a合成 129
4.3.79 化合物63b合成 129
4.3.80 化合物63c合成 130
4.3.81 化合物64合成 131
4.3.82 化合物65合成 132
4.3.83 化合物66合成 133
4.3.84 化合物67合成 134
4.3.85 化合物68合成 134
4.3.86 化合物69合成 135
4.3.87 化合物70合成 135
4.3.88 化合物71合成 136
4.3.89 化合物72合成 137
4.3.90 化合物73合成 139
4.3.91 化合物74合成 140
4.3.92 化合物75合成 141
4.3.93 化合物76合成 142
4.3.94 化合物77合成 143
4.3.95 化合物78合成 143
4.3.96 化合物79合成 144
4.3.97 化合物80合成 146
4.3.98 化合物81合成 147
4.3.99 化合物82合成 148
第五章、參考資料 149
附錄一、核磁共振光譜資料 160
1H NMR Spectrum of 2 162
1H NMR Spectrum of 3 168
1H NMR Spectrum of 4 173
1H NMR Spectrum of 5 175
1H NMR Spectrum of 6 177
1H NMR Spectrum of 8 179
1H NMR Spectrum of 9 180
1H NMR Spectrum of 10 181
1H NMR Spectrum of 13 182
1H NMR Spectrum of 14 183
1H NMR Spectrum of 15 184
1H NMR Spectrum of 18 185
1H NMR Spectrum of 20 186
1H NMR Spectrum of 22 187
1H NMR Spectrum of 23 188
1H NMR Spectrum of 24 189
1H NMR Spectrum of 25 190
1H NMR Spectrum of 26 191
1H NMR Spectrum of 27 193
1H NMR Spectrum of 28 198
1H NMR Spectrum of 29 200
1H NMR Spectrum of 30 202
1H NMR Spectrum of 31 204
1H NMR Spectrum of 32 206
1H NMR Spectrum of 33 208
1H NMR Spectrum of 36a 210
1H NMR Spectrum of 36b 211
1H NMR Spectrum of 36c 212
1H NMR Spectrum of 36d 213
1H NMR Spectrum of 36e 214
1H NMR Spectrum of 36f 215
1H NMR Spectrum of 36g 216
1H NMR Spectrum of 37a 217
1H NMR Spectrum of 37b 218
1H NMR Spectrum of 37c 219
1H NMR Spectrum of 37d 220
1H NMR Spectrum of 37e 221
1H NMR Spectrum of 37f 222
1H NMR Spectrum of 37g 223
1H NMR Spectrum of 37h 223
1H NMR Spectrum of 37i 224
1H NMR Spectrum of 37j 225
1H NMR Spectrum of 37k 226
1H NMR Spectrum of 37l 227
1H NMR Spectrum of 38 230
1H NMR Spectrum of 39 235
1H NMR Spectrum of 40 237
1H NMR Spectrum of 41 239
1H NMR Spectrum of 42 241
1H NMR Spectrum of 43 244
1H NMR Spectrum of 44 246
1H NMR Spectrum of 45 248
1H NMR Spectrum of 46 250
1H NMR Spectrum of 47 252
1H NMR Spectrum of 48 254
1H NMR Spectrum of 49 256
1H NMR Spectrum of 50 258
1H NMR Spectrum of 54 259
1H NMR Spectrum of 55 260
1H NMR Spectrum of 56 261
1H NMR Spectrum of 57 262
1H NMR Spectrum of 59 263
1H NMR Spectrum of 60 264
1H NMR Spectrum of 61a 265
1H NMR Spectrum of 61b 266
1H NMR Spectrum of 61c 267
1H NMR Spectrum of 61d 268
1H NMR Spectrum of 62a 269
1H NMR Spectrum of 62b 270
1H NMR Spectrum of 62c 271
1H NMR Spectrum of 63a 272
1H NMR Spectrum of 63b 273
1H NMR Spectrum of 63c 274
1H NMR Spectrum of 64 275
1H NMR Spectrum of 65 277
1H NMR Spectrum of 66 279
1H NMR Spectrum of 67 281
1H NMR Spectrum of 70 282
1H NMR Spectrum of 71 283
1H NMR Spectrum of 72 284
1H NMR Spectrum of 73 286
1H NMR Spectrum of 74 288
1H NMR Spectrum of 75 289
1H NMR Spectrum of 76 291
1H NMR Spectrum of 77 292
1H NMR Spectrum of 78 293
1H NMR Spectrum of 79 294
1H NMR Spectrum of 80 296
1H NMR Spectrum of 81 298
1H NMR Spectrum of 82 300
1H NMR Spectrum of a1 301
1H NMR Spectrum of a2 303
1H NMR Spectrum of a3 304
1H NMR Spectrum of a4 306
1. 衛生福利部統計資料. 111 年死因統計結果分析. https://www.mohw.gov.tw/dl-83733-80fb9ab8-ea2d-4e3e-ba06-f70f28aca036.html
2. 2022年全民健康保險醫療費用前二十大疾病. 2023.
3. https://www.cancer.gov/about-cancer/treatment/types/surgery
4. 何謂放射治療?化學治療? 臺大醫院健康電子報 2016, (108)
5. https://www.cancer.gov/about-cancer/treatment/types/chemotherapy
6. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy
7. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies
8. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
9. https://helloyishi.com.tw/cancer/all-you-need-to-know-about-cancer-immunotherapy/
10. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
11. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy.
12. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/cancer-treatment-vaccines.
13. Dance, M.; Montagner, A.; Salles, J. P.; Yart, A.; Raynal, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular Signalling 2008, 20 (3), 453-459. DOI: 10.1016/j.cellsig.2007.10.002 From NLM Medline.
14. Mohi, M. G.; Neel, B. G. The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 2007, 17 (1), 23-30. DOI: 10.1016/j.gde.2006.12.011 From NLM Medline.
15. Yuan, X.; Bu, H.; Zhou, J.; Yang, C. Y.; Zhang, H. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application. J Med Chem 2020, 63 (20), 11368-11396. DOI: 10.1021/acs.jmedchem.0c00249 From NLM Medline.
16. Tate, J. G.; Bamford, S.; Jubb, H. C.; Sondka, Z.; Beare, D. M.; Bindal, N.; Boutselakis, H.; Cole, C. G.; Creatore, C.; Dawson, E.; et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019, 47 (D1), D941-D947. DOI: 10.1093/nar/gky1015 From NLM Medline.
17. Liu, M.; Gao, S.; Elhassan, R. M.; Hou, X.; Fang, H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021, 11 (12), 3908-3924. DOI: 10.1016/j.apsb.2021.03.037 From NLM PubMed-not-MEDLINE.
18. Zhang, J.; Zhang, F.; Niu, R. Functions of Shp2 in cancer. J Cell Mol Med 2015, 19 (9), 2075-2083. DOI: 10.1111/jcmm.12618 From NLM Medline.
19. Maertens, O.; Cichowski, K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014, 55, 1-14. DOI: 10.1016/j.jbior.2014.04.002 From NLM Medline.
20. Ren, Y.; Meng, S.; Mei, L.; Zhao, Z. J.; Jove, R.; Wu, J. Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J Biol Chem 2004, 279 (9), 8497-8505. DOI: 10.1074/jbc.M312575200 From NLM Medline.
21. Yuan, Y.; Fan, Y.; Gao, Z.; Sun, X.; Zhang, H.; Wang, Z.; Cui, Y.; Song, W.; Wang, Z.; Zhang, F.; Niu, R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med 2020, 17 (3), 707-725. DOI: 10.20892/j.issn.2095-3941.2020.0056 From NLM Medline.
22. Zehender, A.; Huang, J.; Gyorfi, A. H.; Matei, A. E.; Trinh-Minh, T.; Xu, X.; Li, Y. N.; Chen, C. W.; Lin, J.; Dees, C.; et al. The tyrosine phosphatase SHP2 controls TGFbeta-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun 2018, 9 (1), 1-17. DOI: 10.1038/s41467-018-05768-3 From NLM Medline.
23. (Axelrod, M. L.; Cook, R. S.; Johnson, D. B.; Balko, J. M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019, 25 (8), 2392-2402. DOI: 10.1158/1078-0432.CCR-18-3200 From NLM Medline.
24. Dong, L.; Han, D.; Meng, X.; Xu, M.; Zheng, C.; Xia, Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021, 9, 630712. DOI: 10.3389/fcell.2021.630712 From NLM PubMed-not-MEDLINE.
25. Tsutsumi, R.; Masoudi, M.; Takahashi, A.; Fujii, Y.; Hayashi, T.; Kikuchi, I.; Satou, Y.; Taira, M.; Hatakeyama, M. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell 2013, 26 (6), 658-665. DOI: 10.1016/j.devcel.2013.08.013 From NLM Medline.
26. Chughtai, N.; Schimchowitsch, S.; Lebrun, J. J.; Ali, S. Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem 2002, 277 (34), 31107-31114. DOI: 10.1074/jbc.M200156200 From NLM Medline.
27. Jakob, S.; Schroeder, P.; Lukosz, M.; Buchner, N.; Spyridopoulos, I.; Altschmied, J.; Haendeler, J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 2008, 283 (48), 33155-33161. DOI: 10.1074/jbc.M805138200 From NLM Medline.
28. Bernardes de Jesus, B.; Blasco, M. A. Telomerase at the intersection of cancer and aging. Trends Genet 2013, 29 (9), 513-520. DOI: 10.1016/j.tig.2013.06.007 From NLM Medline.
29. Chen, W.; Han, C.; Xie, B.; Hu, X.; Yu, Q.; Shi, L.; Wang, Q.; Li, D.; Wang, J.; Zheng, P.; et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 2013, 152 (3), 467-478. DOI: 10.1016/j.cell.2013.01.011 From NLM Medline.
30. Asmamaw, M. D.; Shi, X. J.; Zhang, L. R.; Liu, H. M. A comprehensive review of SHP2 and its role in cancer. Cell Oncol (Dordr) 2022, 45 (5), 729-753. DOI: 10.1007/s13402-022-00698-1 From NLM Medline.
31. Yu, J.; Deng, R.; Zhu, H. H.; Zhang, S. S.; Zhu, C.; Montminy, M.; Davis, R.; Feng, G. S. Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem 2013, 288 (6), 3823-3830. DOI: 10.1074/jbc.M112.397885 From NLM Medline.
32. Okur, M. N.; Ooi, J.; Fong, C. W.; Martinez, N.; Garcia-Dominguez, C.; Rojas, J. M.; Guy, G.; O'Bryan, J. P. Intersectin 1 enhances Cbl ubiquitylation of epidermal growth factor receptor through regulation of Sprouty2-Cbl interaction. Mol Cell Biol 2012, 32 (4), 817-825. DOI: 10.1128/MCB.05647-11 From NLM Medline.
33. Yu, Z. H.; Xu, J.; Walls, C. D.; Chen, L.; Zhang, S.; Zhang, R.; Wu, L.; Wang, L.; Liu, S.; Zhang, Z. Y. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 2013, 288 (15), 10472-10482. DOI: 10.1074/jbc.M113.450023 From NLM Medline.
34. Brandao, T. A.; Johnson, S. J.; Hengge, A. C. The molecular details of WPD-loop movement differ in the protein-tyrosine phosphatases YopH and PTP1B. Arch Biochem Biophys 2012, 525 (1), 53-59. DOI: 10.1016/j.abb.2012.06.002 From NLM Medline.
35. Padua, R. A. P.; Sun, Y.; Marko, I.; Pitsawong, W.; Stiller, J. B.; Otten, R.; Kern, D. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat Commun 2018, 9 (1), 4507. DOI: 10.1038/s41467-018-06814-w From NLM Medline.
36. Anselmi, M.; Hub, J. S. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Sci Rep 2020, 10 (1), 18530. DOI: 10.1038/s41598-020-75409-7 From NLM Medline.
37. Mi, D.; Li, Y.; Chen, Y. Small-molecule Modulators Targeting SHP2 for Cancer Therapy. Anticancer Agents Med Chem 2023, 23 (5), 498-504. DOI: 10.2174/1871520622666220921093052 From NLM Medline.
38. Song, Y.; Wang, S.; Zhao, M.; Yang, X.; Yu, B. Strategies Targeting Protein Tyrosine Phosphatase SHP2 for Cancer Therapy. J Med Chem 2022, 65 (4), 3066-3079. DOI: 10.1021/acs.jmedchem.1c02008 From NLM Medline.
39. Varone, A.; Spano, D.; Corda, D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020, 10, 935. DOI: 10.3389/fonc.2020.00935 From NLM PubMed-not-MEDLINE.
40. Alicea-Velazquez, N. L.; Jakoncic, J.; Boggon, T. J. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. J Struct Biol 2013, 181 (3), 243-251. DOI: 10.1016/j.jsb.2012.12.009 From NLM Medline.
41. Chen, Y. N.; LaMarche, M. J.; Chan, H. M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M. G.; Antonakos, B.; Chen, C. H.; Chen, Z.; Cooke, V. G.; et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016, 535 (7610), 148-152. DOI: 10.1038/nature18621 From NLM Medline.
42. Koczywas, M.; Haura, E.; Janne, P. A.; Pacheco, J. M.; Ulahannan, S.; Wang, J. S.; Burris, H. A.; Riess, J. W.; McCoach, C.; Gordon, M. S.; et al. Abstract LB001: Anti-tumor activity and tolerability of the SHP2 inhibitor RMC-4630 as a single agent in patients with RAS-addicted solid cancers. Cancer Research 2021, 81 (13_Supplement), LB001-LB001. DOI: 10.1158/1538-7445.Am2021-lb001.
43. Johnson, M. L.; Langdon, R.; Ellison, D.; Spira, A.; Amin, H.; Castine, M.; Daniel, D.; Larson, T.; Sohoni, S.; Chen, Y. C.; et al. EP08.02-111 RMC-4630, a SHP2 Inhibitor, in Combination with Sotorasib for Advanced KRASG12C NSCLC After Failure of Prior Standard Therapies: A Phase 2 Trial. Journal of Thoracic Oncology 2022, 17 (9), S454-S455. DOI: 10.1016/j.jtho.2022.07.794.
44. Safety and Efficacy Study of SAR442720 in Combination With Other Agents in Advanced Malignancies. DOI: https://clinicaltrials.gov/study/NCT04418661.
45. Dose-Esc/Exp RMC4630 & Cobi in Relapsed/Refractory Solid Tumors & RMC4630& Osi in EGFR+ Locally Adv/Meta NSCLC.
46. A Dose Escalation/Expansion Study of ERAS-601 in Patients With Advanced or Metastatic Solid Tumors (FLAGSHP-1).
47. A Study of Anti-Cancer Therapies Targeting the MAPK Pathway in Patients With Hematologic Malignancies (HERKULES-4).
48. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=676318.
49. JAB-3068 Activity in Adult Patients With Advanced Solid Tumors.
50. JAB-3312 Based Combination Therapy in Adult Patients With Advanced Solid Tumors.
51. Brana, I.; Shapiro, G.; Johnson, M. L.; Yu, H. A.; Robbrecht, D.; Tan, D. S.-W.; Siu, L. L.; Minami, H.; Steeghs, N.; Hengelage, T.; et al. Initial results from a dose finding study of TNO155, a SHP2 inhibitor, in adults with advanced solid tumors. Journal of Clinical Oncology 2021, 39 (15_suppl), 3005-3005. DOI: 10.1200/JCO.2021.39.15_suppl.3005.
52. Study of JDQ443 in Patients With Advanced Solid Tumors Harboring the KRAS G12C Mutation (KontRASt-01).
53. Drilon, A. E.; Johnson, M. L.; Gadgeel, S. M.; Nepert, D.; Feng, G.; Golmakani, M.; Reddy, M.; Harney, A.; Oliver, C.; Mills, B.; et al. A first-in-human, phase 1 study of the SHP2 inhibitor PF-07284892 as monotherapy and in combination with different targeted therapies in oncogene-driven, treatment-resistant solid tumors. Journal of Clinical Oncology 2023, 41 (16_suppl), 3020-3020. DOI: 10.1200/JCO.2023.41.16_suppl.3020.
54. LaMarche, M. J.; Acker, M.; Argintaru, A.; Bauer, D.; Boisclair, J.; Chan, H.; Chen, C. H.; Chen, Y. N.; Chen, Z.; Deng, Z.; et al. Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. J Med Chem 2020, 63 (22), 13578-13594. DOI: 10.1021/acs.jmedchem.0c01170 From NLM Medline.
55. Cartwright, I. L.; Hutchinson, D. W.; Armstrong, V. W. The reaction between thiols and 8-azidoadenosine derivatives. Nucleic Acids Res 1976, 3 (9), 2331-2339. DOI: 10.1093/nar/3.9.2331 From NLM Medline.
56. Suzenet, F.; Sirbu, D.; Guillaumet, G.; Bonnet, P. Polynitrogen compounds and uses thereof as fluorescent chromophores. Google Patents: 2021.
57. Xia, Y.; Li, W.; Qu, F.; Fan, Z.; Liu, X.; Berro, C.; Rauzy, E.; Peng, L. Synthesis of bitriazolyl nucleosides and unexpectedly different reactivity of azidotriazole nucleoside isomers in the Huisgen reaction. Org Biomol Chem 2007, 5 (11), 1695-1701. DOI: 10.1039/b703420b From NLM Medline.
58. Donnelly, P. S.; Zanatta, S. D.; Zammit, S. C.; White, J. M.; Williams, S. J. 'Click' cycloaddition catalysts: copper(I) and copper(II) tris(triazolylmethyl)amine complexes. Chem Commun (Camb) 2008, (21), 2459-2461. DOI: 10.1039/b719724a From NLM Medline.
59. Lamberth, C. First Synthesis of 3-Amino-2-arylimidazo[1,2-b]pyridazines by Groebke-Blackburn Reaction. Synlett 2011, 2011 (12), 1740-1744. DOI: 10.1055/s-0030-1260940.
60. Boltjes, A.; Domling, A. The Groebke-Blackburn-Bienayme Reaction. Eur J Chem 2019, 2019 (42), 7007-7049. DOI: 10.1002/ejoc.201901124 From NLM PubMed-not-MEDLINE.
61. Krasavin, M.; Dar'in, D.; Balalaie, S. Post-condensational modifications of the Groebke‐Blackburn‐Bienaymé reaction products for scaffold-oriented synthesis. Tetrahedron Letters 2021, 86. DOI: 10.1016/j.tetlet.2021.153521.
62. Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Sandulenko, Y.; Bukhryakov, K. tert-Butyl isocyanide revisited as a convertible reagent in the Groebke–Blackburn reaction. Tetrahedron Letters 2008, 49 (51), 7318-7321. DOI: 10.1016/j.tetlet.2008.10.046.
63. Xu, M.; Zhang, X. H.; Zhong, P. Iron-Catalyzed Direct Sulfenylation and Selenylations of Phenylpyrazoles: Synthesis of Fipronil Derivatives with Disulfides Promoted by a Catalytic Amount of Iodine. Synthetic Communications 2012, 42 (23), 3472-3481. DOI: 10.1080/00397911.2011.584262.
64. Wu, S. S.; Feng, C. T.; Hu, D.; Huang, Y. K.; Li, Z.; Luo, Z. G.; Ma, S. T. Iodine-catalyzed direct C-H thiolation of imidazo[1,5-a]quinolines for the synthesis of 3-sulfenylimidazo[1,5-a]quinolines. Org Biomol Chem 2017, 15 (7), 1680-1685. DOI: 10.1039/c6ob02736a From NLM Medline.
65. Thomann, A.; Zapp, J.; Hutter, M.; Empting, M.; Hartmann, R. W. Steering the azido-tetrazole equilibrium of 4-azidopyrimidines via substituent variation - implications for drug design and azide-alkyne cycloadditions. Org Biomol Chem 2015, 13 (43), 10620-10630. DOI: 10.1039/c5ob01006c From NLM Medline.
66. Le Manach, C.; Paquet, T.; Gonzalez Cabrera, D.; Younis, Y.; Taylor, D.; Wiesner, L.; Lawrence, N.; Schwager, S.; Waterson, D.; Witty, M. J.; et al. Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a softfocus kinase library: part 2. J Med Chem 2014, 57 (21), 8839-8848. DOI: 10.1021/jm500887k From NLM Medline.
67. Gatarz, S. E.; Griffiths, O. M.; Esteves, H. A.; Jiao, W.; Morse, P.; Fisher, E. L.; Blakemore, D. C.; Ley, S. V. Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. J Org Chem 2024, 89 (3), 1898-1909. DOI: 10.1021/acs.joc.3c02557 From NLM PubMed-not-MEDLINE.
68. Terme, T.; Maldonado, J.; Crozet, M. P.; Vanelle, P.; Galtier, C.; Gueiffier, A. Synthesis of 2‐substituted‐3‐nitroimidazo[1,2‐b]pyridazines as potential biologically active agents. Journal of Heterocyclic Chemistry 2009, 39 (1), 173-177. DOI: 10.1002/jhet.5570390125.

(此全文20290610後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *