|
Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ Res, 97(6), 512-523. https://doi.org/10.1161/01.RES.0000182903.16652.d7 Attwell, D., Mishra, A., Hall, C. N., O'Farrell, F. M., & Dalkara, T. (2016). What is a pericyte? J Cereb Blood Flow Metab, 36(2), 451-455. https://doi.org/10.1177/0271678x15610340 Bandopadhyay, R., Orte, C., Lawrenson, J. G., Reid, A. R., De Silva, S., & Allt, G. (2001). Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol, 30(1), 35-44. https://doi.org/10.1023/a:1011965307612 Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol, 7(4), 452-464. https://doi.org/10.1215/s1152851705000232 Bernard-Patrzynski, F., Lécuyer, M. A., Puscas, I., Boukhatem, I., Charabati, M., Bourbonnière, L., Ramassamy, C., Leclair, G., Prat, A., & Roullin, V. G. (2019). Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One, 14(12), e0226302. https://doi.org/10.1371/journal.pone.0226302 Carare, R. O., Hawkes, C. A., Jeffrey, M., Kalaria, R. N., & Weller, R. O. (2013). Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol, 39(6), 593-611. https://doi.org/10.1111/nan.12042 Carpentier, G., Berndt, S., Ferratge, S., Rasband, W., Cuendet, M., Uzan, G., & Albanese, P. (2020). Angiogenesis Analyzer for ImageJ - A comparative morphometric analysis of "Endothelial Tube Formation Assay" and "Fibrin Bead Assay". Sci Rep, 10(1), 11568. https://doi.org/10.1038/s41598-020-67289-8 Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E., & Bousser, M. G. (2009). Cadasil. Lancet Neurol, 8(7), 643-653. https://doi.org/10.1016/s1474- 4422(09)70127-9 Chabriat, H., Levy, C., Taillia, H., Iba-Zizen, M. T., Vahedi, K., Joutel, A., Tournier-Lasserve, E., & Bousser, M. G. (1998). Patterns of MRI lesions in CADASIL. Neurology, 51(2), 452-457. https://doi.org/10.1212/wnl.51.2.452 Dave, J. M., & Bayless, K. J. (2014). Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation, 21(4), 333-344. https://doi.org/10.1111/micc.12111 Díaz-Flores, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martín- Vasallo, P., & Díaz-Flores, L., Jr. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol, 24(7), 909-969. https://doi.org/10.14670/hh-24.909 Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132-5137. https://doi.org/10.1038/onc.2008.227 Dziewulska, D., & Lewandowska, E. (2012). Pericytes as a new target for pathological processes in CADASIL. Neuropathology, 32(5), 515-521. https://doi.org/10.1111/j.1440-1789.2011.01290.x Faal, T., Phan, D. T. T., Davtyan, H., Scarfone, V. M., Varady, E., Blurton-Jones, M., Hughes, C. C. W., & Inlay, M. A. (2019). Induction of Mesoderm and Neural Crest-Derived Pericytes from Human Pluripotent Stem Cells to Study Blood-Brain Barrier Interactions. Stem Cell Reports, 12(3), 451-460. https://doi.org/10.1016/j.stemcr.2019.01.005 Guarnaccia, L., Navone, S. E., Trombetta, E., Cordiglieri, C., Cherubini, A., Crisà, F. M., Rampini, P., Miozzo, M., Fontana, L., Caroli, M., Locatelli, M., Riboni, L., Campanella, R., & Marfia, G. (2018). Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy. Sci Rep, 8(1), 8748. https://doi.org/10.1038/s41598-018- 27116-7 Haritunians, T., Boulter, J., Hicks, C., Buhrman, J., DiSibio, G., Shawber, C., Weinmaster, G., Nofziger, D., & Schanen, C. (2002). CADASIL Notch3 mutant proteins localize to the cell surface and bind ligand. Circ Res, 90(5), 506-508. https://doi.org/10.1161/01.res.0000013796.73742.c8 Hicks, C., Johnston, S. H., diSibio, G., Collazo, A., Vogt, T. F., & Weinmaster, G. (2000). Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol, 2(8), 515-520. https://doi.org/10.1038/35019553 Hosseini-Alghaderi, S., & Baron, M. (2020). Notch3 in Development, Health and Disease. Biomolecules, 10(3). https://doi.org/10.3390/biom10030485 Huuskes, B. M., DeBuque, R. J., Kerr, P. G., Samuel, C. S., & Ricardo, S. D. (2019). The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Front Cell Dev Biol, 7, 45. https://doi.org/10.3389/fcell.2019.00045 Jamieson, J. J., Linville, R. M., Ding, Y. Y., Gerecht, S., & Searson, P. C. (2019). Role of iPSC- derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS, 16(1), 15. https://doi.org/10.1186/s12987-019-0136-7 Ji, Y., Chen, S., Xiang, B., Li, Y., Li, L., & Wang, Q. (2016). Jagged1/Notch3 Signaling Modulates Hemangioma-Derived Pericyte Proliferation and Maturation. Cell Physiol Biochem, 40(5), 895-907. https://doi.org/10.1159/000453148 Joutel, A. (2011). Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays, 33(1), 73-80. https://doi.org/10.1002/bies.201000093 Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cécillion, M., Marechal, E., Maciazek, J., Vayssiere, C., Cruaud, C., Cabanis, E. A., Ruchoux, M. M., Weissenbach, J., Bach, J. F., Bousser, M. G., & Tournier-Lasserve, E. (1996). Notch3 mutations in CADASIL, a hereditary adult- onset condition causing stroke and dementia. Nature, 383(6602), 707-710. https://doi.org/10.1038/383707a0 Joutel, A., Monet, M., Domenga, V., Riant, F., & Tournier-Lasserve, E. (2004). Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet, 74(2), 338-347. https://doi.org/10.1086/381506 Kalaria, R. N., & Kittner, S. J. (2020). Top-NOTCH3 Variants in the Population at Large. Stroke, 51(12), 3482-3484. https://doi.org/10.1161/strokeaha.120.031609 Kelley, M., Fierstein, S., Purkey, L., & DeCicco-Skinner, K. (2022). Endothelial Cell Tube Formation Assay: An In Vitro Model for Angiogenesis. Methods Mol Biol, 2475, 187-196. https://doi.org/10.1007/978-1-0716-2217-9_12 Kim, Y., & Lee, S. H. (2019). Novel Characteristics of Race-Specific Genetic Functions in Korean CADASIL. Medicina (Kaunas), 55(9). https://doi.org/10.3390/medicina55090521 Kofler, N. M., Cuervo, H., Uh, M. K., Murtomäki, A., & Kitajewski, J. (2015). Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep, 5, 16449. https://doi.org/10.1038/srep16449 Kurmann, L., Okoniewski, M., Ogunshola, O. O., Leeners, B., Imthurn, B., & Dubey, R. K. (2021). Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function. Cells, 10(4). https://doi.org/10.3390/cells10040963 Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. Development, 131(5), 965-973. https://doi.org/10.1242/dev.01074 Liao, Y. C., Hsiao, C. T., Fuh, J. L., Chern, C. M., Lee, W. J., Guo, Y. C., Wang, S. J., Lee, I. H., Liu, Y. T., Wang, Y. F., Chang, F. C., Chang, M. H., Soong, B. W., & Lee, Y. C. (2015). Characterization of CADASIL among the Han Chinese in Taiwan: Distinct Genotypic and Phenotypic Profiles. PLoS One, 10(8), e0136501. https://doi.org/10.1371/journal.pone.0136501 Liu, H., Kennard, S., & Lilly, B. (2009). NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res, 104(4), 466-475. https://doi.org/10.1161/circresaha.108.184846 Mizuno, T., Mizuta, I., Watanabe-Hosomi, A., Mukai, M., & Koizumi, T. (2020). Clinical and Genetic Aspects of CADASIL. Front Aging Neurosci, 12, 91. https://doi.org/10.3389/fnagi.2020.00091 Mombouli, J. V., & Vanhoutte, P. M. (1999). Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol, 31(1), 61-74. https://doi.org/10.1006/jmcc.1998.0844 Nofziger, D., Miyamoto, A., Lyons, K. M., & Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development, 126(8), 1689-1702. https://doi.org/10.1242/dev.126.8.1689 Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84(3), 767-801. https://doi.org/10.1152/physrev.00041.2003 Papakonstantinou, E., Bacopoulou, F., Brouzas, D., Megalooikonomou, V., D'Elia, D., Bongcam-Rudloff, E., & Vlachakis, D. (2019). NOTCH3 and CADASIL syndrome: a genetic and structural overview. EMBnet J, 24. https://doi.org/10.14806/ej.24.0.921 Peters, N., Opherk, C., Zacherle, S., Capell, A., Gempel, P., & Dichgans, M. (2004). CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk. Exp Cell Res, 299(2), 454-464. https://doi.org/10.1016/j.yexcr.2004.06.004 Phng, L. K., & Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Dev Cell, 16(2), 196-208. https://doi.org/10.1016/j.devcel.2009.01.015 Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258-262. https://doi.org/10.1038/nature24998 Qualtieri, A., Ungaro, C., Bagalà, A., Bianchi, S., Pantoni, L., Moccia, M., & Mazzei, R. (2018). Notch3 protein expression in skin fibroblasts from CADASIL patients. J Neurol Sci, 390, 121-128. https://doi.org/10.1016/j.jns.2018.04.027 Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell, 67(4), 687-699. https://doi.org/10.1016/0092-8674(91)90064-6 Regan, J. N., & Majesky, M. W. (2009). Building a vessel wall with notch signaling. Circ Res, 104(4), 419-421. https://doi.org/10.1161/circresaha.109.194233 Ruchoux, M. M., Kalaria, R. N., & Román, G. C. (2021). The pericyte: A critical cell in the pathogenesis of CADASIL. Cereb Circ Cogn Behav, 2, 100031. https://doi.org/10.1016/j.cccb.2021.100031 Rucker, H. K., Wynder, H. J., & Thomas, W. E. (2000). Cellular mechanisms of CNS pericytes. Brain Res Bull, 51(5), 363-369. https://doi.org/10.1016/s0361- 9230(99)00260-9 Rutten, J. W., Boon, E. M., Liem, M. K., Dauwerse, J. G., Pont, M. J., Vollebregt, E., Maat- Kievit, A. J., Ginjaar, H. B., Lakeman, P., van Duinen, S. G., Terwindt, G. M., & Lesnik Oberstein, S. A. (2013). Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat, 34(11), 1486-1489. https://doi.org/10.1002/humu.22432 Rutten, J. W., Dauwerse, H. G., Gravesteijn, G., van Belzen, M. J., van der Grond, J., Polke, J. M., Bernal-Quiros, M., & Lesnik Oberstein, S. A. (2016). Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol, 3(11), 844-853. https://doi.org/10.1002/acn3.344 Schoemaker, D., & Arboleda-Velasquez, J. F. (2021). Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. Am J Pathol, 191(11), 1856-1870. https://doi.org/10.1016/j.ajpath.2021.03.015 Smyth, L. C. D., Rustenhoven, J., Scotter, E. L., Schweder, P., Faull, R. L. M., Park, T. I. H., & Dragunow, M. (2018). Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat, 92, 48-60. https://doi.org/10.1016/j.jchemneu.2018.06.001 Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2015). TEER measurement techniques for in vitro barrier model systems. J Lab Autom, 20(2), 107-126. https://doi.org/10.1177/2211068214561025 Steinle, H., Golombek, S., Behring, A., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2018). Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs. Mol Ther Nucleic Acids, 13, 387-398. https://doi.org/10.1016/j.omtn.2018.09.005 Sun, K. H., Chang, Y., Reed, N. I., & Sheppard, D. (2016). α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol, 310(9), L824-836. https://doi.org/10.1152/ajplung.00350.2015 Tefft, J. B., Bays, J. L., Lammers, A., Kim, S., Eyckmans, J., & Chen, C. S. (2022). Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am J Physiol Cell Physiol, 322(2), C185-c196. https://doi.org/10.1152/ajpcell.00320.2021 Tigges, U., Welser-Alves, J. V., Boroujerdi, A., & Milner, R. (2012). A novel and simple method for culturing pericytes from mouse brain. Microvasc Res, 84(1), 74-80. https://doi.org/10.1016/j.mvr.2012.03.008 Tikka, S., Mykkänen, K., Ruchoux, M. M., Bergholm, R., Junna, M., Pöyhönen, M., Yki- Järvinen, H., Joutel, A., Viitanen, M., Baumann, M., & Kalimo, H. (2009). Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain, 132(Pt 4), 933-939. https://doi.org/10.1093/brain/awn364 Yang, L. T., Nichols, J. T., Yao, C., Manilay, J. O., Robey, E. A., & Weinmaster, G. (2005). Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell, 16(2), 927-942. https://doi.org/10.1091/mbc.e04-07-0614 Yuan, X., Wu, H., Xu, H., Xiong, H., Chu, Q., Yu, S., Wu, G. S., & Wu, K. (2015). Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett, 369(1), 20-27. https://doi.org/10.1016/j.canlet.2015.07.048 Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M., & Kalluri, R. (2008). Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol, 19(12), 2282-2287. https://doi.org/10.1681/asn.2008050513 Zhao, Z., Nelson, A. R., Betsholtz, C., & Zlokovic, B. V. (2015). Establishment and Dysfunction of the Blood-Brain Barrier. Cell, 163(5), 1064-1078. https://doi.org/10.1016/j.cell.2015.10.067
|