帳號:guest(3.137.174.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁晴閔
作者(外文):Liang, Ching-Min
論文名稱(中文):研究 CADASIL疾病模型Notch3R545C小鼠內皮細胞與壁細胞的相互作用
論文名稱(外文):Study the interaction of endothelial cells and mural cells in the CADASIL disease modeling Notch3R545C mouse
指導教授(中文):楊良棟
李佳霖
指導教授(外文):Yang, Liang-Tung
Lee, Jia-Lin
口試委員(中文):李宜中
黃玠誠
口試委員(外文):Lee, Yi-Chung
Huang, Chieh-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:110080598
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:70
中文關鍵詞:CADASILNoctchR544C小血管疾病缺血性腦中風NOTCH 信號通路周細胞內皮細胞
外文關鍵詞:CADASILNoctchR544Cp.Arg544Cyssmall vessel diseaseischemic strokeNOTCH signaling pathwaypericytesendothelial cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
CADASIL(體顯性腦動脈血管病變合併皮質下腦梗塞及腦白質病變)是一種 由 NOTCH3 基因突變引起的單基因遺傳性小血管疾病。NOTCH3 p.Arg544Cys 突 變是常見於台灣人基因的 CADASIL 致病突變,目前有超過 70%的台灣 CADASIL 病患帶有此 p.Arg544Cys 突變。NOTCH3 p.Arg544Cys 突變位於 NOTCH3 的胞外結 構域中 EGF-like repeats(EGFR)13 和 14 的交界處,此位置靠近 NOTCH3 與其配 體的結合位點 EGFR 11-12。NOTCH 信號通路還參與血管生成的調控、血管穩態的 維持和血管通透性屏障。有鑒於人類 NOTCH3 p.Arg544Cys 突變的位置,我們推測 小鼠的 NOTCH3 p.R545C 突變可能直接影響受體與配體的結合,導致周細胞與內 皮細胞間異常的相互作用,並從而導致血管功能的缺陷。

在本研究中,我們探討了 NOTCH3WT 和 NOTCH3R545 在受體-配體的結合效率 和配體誘導之訊號活性,以及 Notch3WT 野生型和 Notch3R545 突變型兩種小鼠之周細 胞的細胞功能。我們在過表現研究中觀察到 NOTCH3R545C 表現較低的配體結合效 率以及配體誘導之 NOTCH 信號通路的活性,在初代細胞研究中,我們也觀察到野 生型周細胞比 p.Arg545Cys 突變型周細胞能更好的支持血管新生、維持血管穩定度 以及支持更好的血管屏障功能。整體來說,我們的數據表明 NOTCH3 p.Arg544Cys 突變可能對血管穩態產生負面影響。
CADASIL (Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is a hereditarily monogenic small vessel disease (SVD) caused by mutations in NOTCH3 gene. NOTCH3 p.Arg544Cys mutation is a common mutation that causes CADASIL in Taiwan— more than 70% of the diseased Taiwanese population carry the R544C mutation. The NOTCH3 p.Arg544Cys mutation locates at the boundary of EGF-like repeats (EGFR) 13 and 14 in the extracellular domain of NOTCH3, which is close to the ligand-binding site EGFR 11-12. NOTCH signaling is involved in the modulation of angiogenesis, vascular homeostasis, and vascular permeability barrier. Given the location of human NOTCH3 p.Arg544Cys mutation, we speculate that the murine NOTCH3 p.Arg545Cys mutation directly impacts the binding of ligand-receptor and causes the abnormal cell-cell interactions between mural cells and endothelial cells, which leads to deficits in vascular function.
In this study, we measure the ligand-binding efficiency, ligand-induced signal activity of NOTCH3WT and NOTCH3R545C, and also the biological function of mural cells from Notch3WT and Notch3R545C mice. In the overexpression study, NOTCH3R545C displays reduced ligand-binding efficiency and ligand-induced NOTCH signal activity. In the primary cell study, we also observed that the NOTCH3WT mural cells support the angiogenesis, maintain vessel stability and barrier function better than NOTCH3R545C mural cells. Overall, our data suggest that NOTCH3 p.R544C mutation could generate a negative impact on the blood vessel homeostasis.
Abstract...I
中文摘要 ... II
致謝... III
Table of Contents...IV
Chapter 1. Introduction...1
1.1 CADASIL...1
1.2 NOTCH signaling...2
1.3 Cerebral small vascular system...4
1.4 NOTCH3 signaling in the blood vessel formation ... 6
1.5 Aim ... 7
Chapter 2. Materials and Methods...9
2.1 Experiment design ... 9
2.2 Reagent... 11
2.3 Animal ... 13
2.4 Cell line and cell culture ... 13
2.5 Antibody and fluorescent dye ... 14
2.6 DNA construct ... 14
2.7 Transfection ... 15
2.8 Immunocytochemistry (ICC)...15
2.9 Production of Delta-Fc soluble ligand...16
2.10 Soluble ligand binding assay in overexpression study and primary cell study... 17
2.11 NOTCH3 cell surface expression assay... 18
2.12 Dual-Luciferase reporter assay...19
2.13 JAGGED1 expressing-Swiss 3T3 stable cell line...20
2.14 Western blotting ... 20
2.15 Isolation of mice brain pericytes...20
2.16 Tube formation assay... 22
2.17 Trans-endothelial Electrical Resistance (TEER)...23
2.18 Vascular permeability assay... 24
Chapter 3. Results... 25
3.1 NOTCH3 and JAGGED1 binding through cell-cell interaction ... 25
3.2 The p.R545C mutation may reduce the ligand binding efficiency... 25
3.3 The p.R545C mutation reduces the ligand-induced NOTCH signal activity...27
3.4 Immunocytochemical characterization of pericyte cultures and bEND3 cell line ... 28
3.5 Notch3WT and Notch3R545C mural cells display no significant difference in ligand binding efficiency... 30
3.6 Notch3WT mural cells promote angiogenesis better than Notch3R545C mural cells. ... 31
3.7 Notch3R545C mural cells display declined barrier function... 32
3.8 Conclusion... 33
Chapter 4. Discussion ... 34
4.1 The later symptom-onset in Taiwanese population might relate to the moderate impacts of the p.Arg544Cys mutation... 34
4.2 The functional assays... 36
4.3 Behavioral assessment of the neurodegenerative function of Notch3R545C CRISPR-edited homozygous knock-in mice...38
Figures and Tables ... 39
Figure.1 MRI T2 white matter abnormalities in CADASIL patients... 39 Figure.2 Process of the five main clinical manifestations of CADASIL... 39
Figure.3 NOTCH signaling pathway in mammals...40
Figure.4 Structures of NOTCH3 receptor and JAGGED1 ligand... 41
Figure.5 Location of the p.R544C mutation ... 42
Figure.6 Chart of experiment design...43
Figure.7 Schematic diagram of soluble ligand binding assay of 293T cell... 43
Figure.8 Schematic diagram of NOTCH3 cell surface expression assay of 293T cell... 44
Figure.9 Schematic diagram of The Dual-Luciferase® Reporter (DLRTM) Assay System... 44
Figure.10 Measure the cell-cell interaction of NOTCH3 and JAGGED1 binding... 45
Figure.11 The p.R545C mutation may reduce the ligand binding efficiency... 46
Figure.12 JAGGED1 ligand-induced NOTCH3 signal activity...49
Figure.13 Characterization of adult brain pericyte cell culture... 50 Figure.14 Characterization of endothelial cell line bEND3... 51 Figure.15 Characterization of neonatal pericyte cell culture... 53 Figure.16 Notch3WT and Notch3R545C mural cells display no significant difference in ligand binding efficiency... 54
Figure.17 Analysis of angiogenic potential of bEND3 cells with Notch3WT or Notch3R545C pericytes by in vitro Tube Formation Assay... 56
Figure.18 Notch3WT and Notch3R545C mural cells display no significant difference in barrier formation and barrier function through TEER assay.... 59
Figure.19 Notch3R545C mural cells display declined barrier function through vascular permeability assay... 60
Figure.20 JAGGED1 stable-ligand-induced NOTCH3 signal activity...61
Table.1 Primary antibodies used in this study...62
Table.2 Secondary antibodies used in this study... 63
Table.3 Fluorescent dyes used in this study... 63
Table.4 Common cell markers for brain cells... 64
Reference... 65
Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ Res, 97(6), 512-523. https://doi.org/10.1161/01.RES.0000182903.16652.d7
Attwell, D., Mishra, A., Hall, C. N., O'Farrell, F. M., & Dalkara, T. (2016). What is a pericyte? J Cereb Blood Flow Metab, 36(2), 451-455. https://doi.org/10.1177/0271678x15610340
Bandopadhyay, R., Orte, C., Lawrenson, J. G., Reid, A. R., De Silva, S., & Allt, G. (2001). Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol, 30(1), 35-44. https://doi.org/10.1023/a:1011965307612
Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol, 7(4), 452-464. https://doi.org/10.1215/s1152851705000232
Bernard-Patrzynski, F., Lécuyer, M. A., Puscas, I., Boukhatem, I., Charabati, M., Bourbonnière, L., Ramassamy, C., Leclair, G., Prat, A., & Roullin, V. G. (2019). Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One, 14(12), e0226302. https://doi.org/10.1371/journal.pone.0226302
Carare, R. O., Hawkes, C. A., Jeffrey, M., Kalaria, R. N., & Weller, R. O. (2013). Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol, 39(6), 593-611. https://doi.org/10.1111/nan.12042
Carpentier, G., Berndt, S., Ferratge, S., Rasband, W., Cuendet, M., Uzan, G., & Albanese, P. (2020). Angiogenesis Analyzer for ImageJ - A comparative morphometric analysis of "Endothelial Tube Formation Assay" and "Fibrin Bead Assay". Sci Rep, 10(1), 11568. https://doi.org/10.1038/s41598-020-67289-8
Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E., & Bousser, M. G. (2009). Cadasil. Lancet Neurol, 8(7), 643-653. https://doi.org/10.1016/s1474- 4422(09)70127-9
Chabriat, H., Levy, C., Taillia, H., Iba-Zizen, M. T., Vahedi, K., Joutel, A., Tournier-Lasserve, E., & Bousser, M. G. (1998). Patterns of MRI lesions in CADASIL. Neurology, 51(2), 452-457. https://doi.org/10.1212/wnl.51.2.452
Dave, J. M., & Bayless, K. J. (2014). Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation, 21(4), 333-344. https://doi.org/10.1111/micc.12111
Díaz-Flores, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martín-
Vasallo, P., & Díaz-Flores, L., Jr. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol, 24(7), 909-969. https://doi.org/10.14670/hh-24.909
Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132-5137. https://doi.org/10.1038/onc.2008.227
Dziewulska, D., & Lewandowska, E. (2012). Pericytes as a new target for pathological processes in CADASIL. Neuropathology, 32(5), 515-521. https://doi.org/10.1111/j.1440-1789.2011.01290.x
Faal, T., Phan, D. T. T., Davtyan, H., Scarfone, V. M., Varady, E., Blurton-Jones, M., Hughes, C. C. W., & Inlay, M. A. (2019). Induction of Mesoderm and Neural Crest-Derived Pericytes from Human Pluripotent Stem Cells to Study Blood-Brain Barrier Interactions. Stem Cell Reports, 12(3), 451-460. https://doi.org/10.1016/j.stemcr.2019.01.005
Guarnaccia, L., Navone, S. E., Trombetta, E., Cordiglieri, C., Cherubini, A., Crisà, F. M., Rampini, P., Miozzo, M., Fontana, L., Caroli, M., Locatelli, M., Riboni, L., Campanella, R., & Marfia, G. (2018). Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy. Sci Rep, 8(1), 8748. https://doi.org/10.1038/s41598-018- 27116-7
Haritunians, T., Boulter, J., Hicks, C., Buhrman, J., DiSibio, G., Shawber, C., Weinmaster, G., Nofziger, D., & Schanen, C. (2002). CADASIL Notch3 mutant proteins localize to the cell surface and bind ligand. Circ Res, 90(5), 506-508. https://doi.org/10.1161/01.res.0000013796.73742.c8
Hicks, C., Johnston, S. H., diSibio, G., Collazo, A., Vogt, T. F., & Weinmaster, G. (2000). Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol, 2(8), 515-520. https://doi.org/10.1038/35019553
Hosseini-Alghaderi, S., & Baron, M. (2020). Notch3 in Development, Health and Disease. Biomolecules, 10(3). https://doi.org/10.3390/biom10030485
Huuskes, B. M., DeBuque, R. J., Kerr, P. G., Samuel, C. S., & Ricardo, S. D. (2019). The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Front Cell Dev Biol, 7, 45. https://doi.org/10.3389/fcell.2019.00045
Jamieson, J. J., Linville, R. M., Ding, Y. Y., Gerecht, S., & Searson, P. C. (2019). Role of iPSC- derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS, 16(1), 15. https://doi.org/10.1186/s12987-019-0136-7
Ji, Y., Chen, S., Xiang, B., Li, Y., Li, L., & Wang, Q. (2016). Jagged1/Notch3 Signaling
Modulates Hemangioma-Derived Pericyte Proliferation and Maturation. Cell
Physiol Biochem, 40(5), 895-907. https://doi.org/10.1159/000453148 Joutel, A. (2011). Pathogenesis of CADASIL: transgenic and knock-out mice to probe
function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays, 33(1), 73-80. https://doi.org/10.1002/bies.201000093
Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cécillion, M., Marechal, E., Maciazek, J., Vayssiere, C., Cruaud, C., Cabanis, E. A., Ruchoux, M. M., Weissenbach, J., Bach, J. F., Bousser, M. G., & Tournier-Lasserve, E. (1996). Notch3 mutations in CADASIL, a hereditary adult- onset condition causing stroke and dementia. Nature, 383(6602), 707-710. https://doi.org/10.1038/383707a0
Joutel, A., Monet, M., Domenga, V., Riant, F., & Tournier-Lasserve, E. (2004). Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet, 74(2), 338-347. https://doi.org/10.1086/381506
Kalaria, R. N., & Kittner, S. J. (2020). Top-NOTCH3 Variants in the Population at Large. Stroke, 51(12), 3482-3484. https://doi.org/10.1161/strokeaha.120.031609
Kelley, M., Fierstein, S., Purkey, L., & DeCicco-Skinner, K. (2022). Endothelial Cell Tube Formation Assay: An In Vitro Model for Angiogenesis. Methods Mol Biol, 2475, 187-196. https://doi.org/10.1007/978-1-0716-2217-9_12
Kim, Y., & Lee, S. H. (2019). Novel Characteristics of Race-Specific Genetic Functions in Korean CADASIL. Medicina (Kaunas), 55(9). https://doi.org/10.3390/medicina55090521
Kofler, N. M., Cuervo, H., Uh, M. K., Murtomäki, A., & Kitajewski, J. (2015). Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep, 5, 16449. https://doi.org/10.1038/srep16449
Kurmann, L., Okoniewski, M., Ogunshola, O. O., Leeners, B., Imthurn, B., & Dubey, R. K. (2021). Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function. Cells, 10(4). https://doi.org/10.3390/cells10040963
Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. Development, 131(5), 965-973. https://doi.org/10.1242/dev.01074
Liao, Y. C., Hsiao, C. T., Fuh, J. L., Chern, C. M., Lee, W. J., Guo, Y. C., Wang, S. J., Lee, I. H., Liu, Y. T., Wang, Y. F., Chang, F. C., Chang, M. H., Soong, B. W., & Lee, Y. C. (2015). Characterization of CADASIL among the Han Chinese in Taiwan: Distinct
Genotypic and Phenotypic Profiles. PLoS One, 10(8), e0136501.
https://doi.org/10.1371/journal.pone.0136501
Liu, H., Kennard, S., & Lilly, B. (2009). NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res, 104(4), 466-475. https://doi.org/10.1161/circresaha.108.184846
Mizuno, T., Mizuta, I., Watanabe-Hosomi, A., Mukai, M., & Koizumi, T. (2020). Clinical and Genetic Aspects of CADASIL. Front Aging Neurosci, 12, 91. https://doi.org/10.3389/fnagi.2020.00091
Mombouli, J. V., & Vanhoutte, P. M. (1999). Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol, 31(1), 61-74. https://doi.org/10.1006/jmcc.1998.0844
Nofziger, D., Miyamoto, A., Lyons, K. M., & Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development, 126(8), 1689-1702. https://doi.org/10.1242/dev.126.8.1689
Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84(3), 767-801. https://doi.org/10.1152/physrev.00041.2003
Papakonstantinou, E., Bacopoulou, F., Brouzas, D., Megalooikonomou, V., D'Elia, D., Bongcam-Rudloff, E., & Vlachakis, D. (2019). NOTCH3 and CADASIL syndrome: a genetic and structural overview. EMBnet J, 24. https://doi.org/10.14806/ej.24.0.921
Peters, N., Opherk, C., Zacherle, S., Capell, A., Gempel, P., & Dichgans, M. (2004). CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk. Exp Cell Res, 299(2), 454-464. https://doi.org/10.1016/j.yexcr.2004.06.004
Phng, L. K., & Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Dev Cell, 16(2), 196-208. https://doi.org/10.1016/j.devcel.2009.01.015
Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258-262. https://doi.org/10.1038/nature24998
Qualtieri, A., Ungaro, C., Bagalà, A., Bianchi, S., Pantoni, L., Moccia, M., & Mazzei, R. (2018). Notch3 protein expression in skin fibroblasts from CADASIL patients. J Neurol Sci, 390, 121-128. https://doi.org/10.1016/j.jns.2018.04.027
Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell, 67(4), 687-699. https://doi.org/10.1016/0092-8674(91)90064-6
Regan, J. N., & Majesky, M. W. (2009). Building a vessel wall with notch signaling. Circ
Res, 104(4), 419-421. https://doi.org/10.1161/circresaha.109.194233
Ruchoux, M. M., Kalaria, R. N., & Román, G. C. (2021). The pericyte: A critical cell in the
pathogenesis of CADASIL. Cereb Circ Cogn Behav, 2, 100031.
https://doi.org/10.1016/j.cccb.2021.100031
Rucker, H. K., Wynder, H. J., & Thomas, W. E. (2000). Cellular mechanisms of CNS pericytes. Brain Res Bull, 51(5), 363-369. https://doi.org/10.1016/s0361- 9230(99)00260-9
Rutten, J. W., Boon, E. M., Liem, M. K., Dauwerse, J. G., Pont, M. J., Vollebregt, E., Maat- Kievit, A. J., Ginjaar, H. B., Lakeman, P., van Duinen, S. G., Terwindt, G. M., & Lesnik Oberstein, S. A. (2013). Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat, 34(11), 1486-1489. https://doi.org/10.1002/humu.22432
Rutten, J. W., Dauwerse, H. G., Gravesteijn, G., van Belzen, M. J., van der Grond, J., Polke, J. M., Bernal-Quiros, M., & Lesnik Oberstein, S. A. (2016). Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol, 3(11), 844-853. https://doi.org/10.1002/acn3.344
Schoemaker, D., & Arboleda-Velasquez, J. F. (2021). Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. Am J Pathol, 191(11), 1856-1870. https://doi.org/10.1016/j.ajpath.2021.03.015
Smyth, L. C. D., Rustenhoven, J., Scotter, E. L., Schweder, P., Faull, R. L. M., Park, T. I. H., & Dragunow, M. (2018). Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat, 92, 48-60. https://doi.org/10.1016/j.jchemneu.2018.06.001
Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2015). TEER measurement techniques for in vitro barrier model systems. J Lab Autom, 20(2), 107-126. https://doi.org/10.1177/2211068214561025
Steinle, H., Golombek, S., Behring, A., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2018). Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs. Mol Ther Nucleic Acids, 13, 387-398. https://doi.org/10.1016/j.omtn.2018.09.005
Sun, K. H., Chang, Y., Reed, N. I., & Sheppard, D. (2016). α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol, 310(9), L824-836. https://doi.org/10.1152/ajplung.00350.2015
Tefft, J. B., Bays, J. L., Lammers, A., Kim, S., Eyckmans, J., & Chen, C. S. (2022). Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am J Physiol
Cell Physiol, 322(2), C185-c196. https://doi.org/10.1152/ajpcell.00320.2021 Tigges, U., Welser-Alves, J. V., Boroujerdi, A., & Milner, R. (2012). A novel and simple
method for culturing pericytes from mouse brain. Microvasc Res, 84(1), 74-80.
https://doi.org/10.1016/j.mvr.2012.03.008
Tikka, S., Mykkänen, K., Ruchoux, M. M., Bergholm, R., Junna, M., Pöyhönen, M., Yki- Järvinen, H., Joutel, A., Viitanen, M., Baumann, M., & Kalimo, H. (2009). Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain, 132(Pt 4), 933-939. https://doi.org/10.1093/brain/awn364
Yang, L. T., Nichols, J. T., Yao, C., Manilay, J. O., Robey, E. A., & Weinmaster, G. (2005). Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell, 16(2), 927-942. https://doi.org/10.1091/mbc.e04-07-0614
Yuan, X., Wu, H., Xu, H., Xiong, H., Chu, Q., Yu, S., Wu, G. S., & Wu, K. (2015). Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett, 369(1), 20-27. https://doi.org/10.1016/j.canlet.2015.07.048
Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M., & Kalluri, R. (2008). Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol, 19(12), 2282-2287. https://doi.org/10.1681/asn.2008050513
Zhao, Z., Nelson, A. R., Betsholtz, C., & Zlokovic, B. V. (2015). Establishment and Dysfunction of the Blood-Brain Barrier. Cell, 163(5), 1064-1078. https://doi.org/10.1016/j.cell.2015.10.067
(此全文20270102後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *