|
Benson, E. K., Lee, S. W., & Aaronson, S. A. (2010). Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. Journal of cell science, 123(15), 2605-2612. Bentley, D., Fisher, B. A., Barone, F., Kolb, F. A., & Attley, G. (2023). A randomized, double-blind, placebo-controlled, parallel group study on the effects of a cathepsin S inhibitor in primary Sjögren’s syndrome. Rheumatology, kead092. Bi, P., Yue, F., Sato, Y., Wirbisky, S., Liu, W., Shan, T., Wen, Y., Zhou, D., Freeman, J., & Kuang, S. (2016). Stage-specific effects of Notch activation during skeletal myogenesis. Elife, 5, e17355. Bonne, G., Barletta, M. R. D., Varnous, S., Bécane, H.-M., Hammouda, E.-H., Merlini, L., Muntoni, F., Greenberg, C. R., Gary, F., & Urtizberea, J.-A. (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature genetics, 21(3), 285-288. Brown, R., Nath, S., Lora, A., Samaha, G., Elgamal, Z., Kaiser, R., Taggart, C., Weldon, S., & Geraghty, P. (2020). Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respiratory Research, 21, 1-17. Brüning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Hörsch, D., Accili, D., Goodyear, L. J., & Kahn, C. R. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Molecular cell, 2(5), 559-569. Bruusgaard, J., Liestøl, K., Ekmark, M., Kollstad, K., & Gundersen, K. (2003). Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. The Journal of physiology, 551(2), 467-478. Butin-Israeli, V., Adam, S. A., Goldman, A. E., & Goldman, R. D. (2012). Nuclear lamin functions and disease. Trends in genetics, 28(9), 464-471. Cadiñanos, J., Varela, I., López-Otín, C., & Freije, J. M. (2005). From immature lamin to premature aging: molecular pathways and therapeutic opportunities. Cell Cycle, 4(12), 1732-1735. Cadot, B., Gache, V., Vasyutina, E., Falcone, S., Birchmeier, C., & Gomes, E. R. (2012). Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO reports, 13(8), 741-749. Camozzi, D., Capanni, C., Cenni, V., Mattioli, E., Columbaro, M., Squarzoni, S., & Lattanzi, G. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics: Focus on laminopathies. Nucleus, 5(5), 427-440. Capell, B. C., Erdos, M. R., Madigan, J. P., Fiordalisi, J. J., Varga, R., Conneely, K. N., Gordon, L. B., Der, C. J., Cox, A. D., & Collins, F. S. (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences, 102(36), 12879-12884. Capers, C. R. (1960). Multinucleation of skeletal muscle in vitro. The Journal of Cell Biology, 7(3), 559-565. Cenni, V., Capanni, C., Mattioli, E., Schena, E., Squarzoni, S., Bacalini, M. G., Garagnani, P., Salvioli, S., Franceschi, C., & Lattanzi, G. (2020). Lamin A involvement in ageing processes. Ageing Research Reviews, 62, 101073. Cenni, V., D’Apice, M. R., Garagnani, P., Columbaro, M., Novelli, G., Franceschi, C., & Lattanzi, G. (2018). Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Research Reviews, 42, 1-13. Chang, C.-J., Hsu, H.-C., Ho, W.-J., Chang, G.-J., Pang, J.-H. S., Chen, W.-J., Huang, C.-C., & Lai, Y.-J. (2019). Cathepsin S promotes the development of pulmonary arterial hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317(1), L1-L13. Chapman, H. A., Riese, R. J., & Shi, G.-P. (1997). Emerging roles for cysteine proteases in human biology. Annual review of physiology, 59(1), 63-88. Chazaud, B., Brigitte, M., Yacoub-Youssef, H., Arnold, L., Gherardi, R., Sonnet, C., Lafuste, P., & Chretien, F. (2009). Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exercise and sport sciences reviews, 37(1), 18-22. Chen, C., Ma, H., Zhang, F., Chen, L., Xing, X., Wang, S., Zhang, X., & Luo, Y. (2014). Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One, 9(9), e108038. Chen, L., Lee, L., Kudlow, B. A., Dos Santos, H. G., Sletvold, O., Shafeghati, Y., Botha, E. G., Garg, A., Hanson, N. B., & Martin, G. M. (2003). LMNA mutations in atypical Werner's syndrome. The Lancet, 362(9382), 440-445. Chen, W.-J., Lin, I.-H., Lee, C.-W., & Chen, Y.-F. (2021). Aged skeletal muscle retains the ability to remodel extracellular matrix for degradation of collagen deposition after muscle injury. International journal of molecular sciences, 22(4), 2123. Chi, Y.-H., Chen, Z.-J., & Jeang, K.-T. (2009). The nuclear envelopathies and human diseases. Journal of biomedical science, 16, 1-8. Coppedè, F. (2013). The epidemiology of premature aging and associated comorbidities. Clinical interventions in aging, 1023-1032. Creasy, B. M., & McCoy, K. L. (2011). Cytokines regulate cysteine cathepsins during TLR responses. Cellular immunology, 267(1), 56-66. De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annual review of physiology, 28(1), 435-492. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich, A., & Le Merrer, M. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055-2055. DeBusk, F. L. (1972). The Hutchinson-Gilford progeria syndrome: report of 4 cases and review of the literature. The Journal of pediatrics, 80(4), 697-724. Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., & Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes & development, 22(7), 832-853. Delaney, K., Kasprzycka, P., Ciemerych, M. A., & Zimowska, M. (2017). The role of TGF‐β1 during skeletal muscle regeneration. Cell Biology International, 41(7), 706-715. Dittmer, T. A., & Misteli, T. (2011). The lamin protein family. Genome biology, 12(5), 1-14. Duance, V., Restall, D., Beard, H., Bourne, F., & Bailey, A. (1977). The location of three collagen types in skeletal muscle. FEBS letters, 79(2), 248-252. Dubik, N., & Mai, S. (2020). Lamin A/C: function in normal and tumor cells. Cancers, 12(12), 3688. Dubowitz, V., Sewry, C. A., & Oldfors, A. (2020). Muscle Biopsy E-Book: A Practical Approach. Elsevier Health Sciences. Duddy, W., Duguez, S., Johnston, H., Cohen, T. V., Phadke, A., Gordish-Dressman, H., Nagaraju, K., Gnocchi, V., Low, S., & Partridge, T. (2015). Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skeletal Muscle, 5(1), 1-18. Erdos, M. R., Cabral, W. A., Tavarez, U. L., Cao, K., Gvozdenovic-Jeremic, J., Narisu, N., Zerfas, P. M., Crumley, S., Boku, Y., & Hanson, G. (2021). A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nature medicine, 27(3), 536-545. Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., & Berglund, P. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature, 423(6937), 293-298. Fan, Q., Wang, X., Zhang, H., Li, C., Fan, J., & Xu, J. (2012). Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro. Biochemical and Biophysical Research Communications, 425(4), 703-710. Folker, E. S., & Baylies, M. K. (2013). Nuclear positioning in muscle development and disease. Frontiers in physiology, 4, 363. Folker, E. S., Östlund, C., Luxton, G. G., Worman, H. J., & Gundersen, G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proceedings of the National Academy of Sciences, 108(1), 131-136. Frontera, W. R., & Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. Calcified tissue international, 96, 183-195. Gelb, B. D., Shi, G.-P., Chapman, H. A., & Desnick, R. J. (1996). Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 273(5279), 1236-1238. Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—structure, function, and biosynthesis. Advanced drug delivery reviews, 55(12), 1531-1546. Geraghty, P., Greene, C. M., O'Mahony, M., O'Neill, S. J., Taggart, C. C., & McElvaney, N. G. (2007). Secretory leucocyte protease inhibitor inhibits interferon-γ-induced cathepsin S expression. Journal of Biological Chemistry, 282(46), 33389-33395. Gil-Cayuela, C., Roselló-LLetí, E., Ortega, A., Tarazón, E., Triviño, J. C., Martínez-Dolz, L., González-Juanatey, J. R., Lago, F., Portolés, M., & Rivera, M. (2016). New altered non-fibrillar collagens in human dilated cardiomyopathy: role in the remodeling process. PLoS One, 11(12), e0168130. Gilford, H. (1904). Ateleiosis and progeria: continuous youth and premature old age. Brit Med J, 2, 914-918. Gillies, A. R., & Lieber, R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle & nerve, 44(3), 318-331. Glynn, M. W., & Glover, T. W. (2005). Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Human molecular genetics, 14(20), 2959-2969. Gocheva, V., Wang, H.-W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., Berman, T., & Joyce, J. A. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes & development, 24(3), 241-255. Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., Gruenbaum, Y., Khuon, S., Mendez, M., & Varga, R. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences, 101(24), 8963-8968. Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Research Reviews, 33, 18-29. Gordon, L. B., Brown, W. T., & Collins, F. S. (2019). Hutchinson-Gilford progeria syndrome. Gordon, L. B., Norris, W., Hamren, S., Goodson, R., LeClair, J., Massaro, J., Lyass, A., D’Agostino Sr, R. B., Tuminelli, K., & Kieran, M. W. (2023). Plasma progerin in patients with Hutchinson-Gilford progeria syndrome: immunoassay development and clinical evaluation. Circulation, 147(23), 1734-1744. Gordon, L. B., Shappell, H., Massaro, J., D’Agostino, R. B., Brazier, J., Campbell, S. E., Kleinman, M. E., & Kieran, M. W. (2018). Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. Jama, 319(16), 1687-1695. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K., & Wilson, K. L. (2005). The nuclear lamina comes of age. Nature reviews Molecular cell biology, 6(1), 21-31. Gruenbaum, Y., Wilson, K. L., Harel, A., Goldberg, M., & Cohen, M. (2000). Nuclear lamins—structural proteins with fundamental functions. Journal of structural biology, 129(2-3), 313-323. Gueneau, L., Bertrand, A. T., Jais, J.-P., Salih, M. A., Stojkovic, T., Wehnert, M., Hoeltzenbein, M., Spuler, S., Saitoh, S., & Verschueren, A. (2009). Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy. The American Journal of Human Genetics, 85(3), 338-353. GUINEC, N., DALET-FUMERON, V., & PAGANO, M. (1993). “In vitro” Study of Basement Membrane Degradation by the Cysteine Proteinases, Cathepsins B, B-Like and L. Digestion of Collagen IV, Laminin, Fibronectin, and Release of Gelatinase Activities front Basement Membrane Fibronectin. Hashimoto, Y., Kakegawa, H., Narita, Y., Hachiya, Y., Hayakawa, T., Kos, J., Turk, V., & Katunuma, N. (2001). Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochemical and Biophysical Research Communications, 283(2), 334-339. Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical reviews, 102(12), 4501-4524. Hennekam, R. C. (2006). Hutchinson–Gilford progeria syndrome: review of the phenotype. American journal of medical genetics Part A, 140(23), 2603-2624. Honey, K., & Rudensky, A. Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology, 3(6), 472-482. Hsing, L. C., & Rudensky, A. Y. (2005). The lysosomal cysteine proteases in MHC class II antigen presentation. Immunological reviews, 207(1), 229-241. Ikeda, Y., Ikata, T., Mishiro, T., Nakano, S., Ikebe, M., & Yasuoka, S. (2000). Cathepsins B and L in synovial fluids from patients with rheumatoid arthritis and the effect of cathepsin B on the activation of pro-urokinase. JOURNAL OF MEDICAL INVESTIGATION, 47(1/2), 61-75. Jadhav, P. K., Schiffler, M. A., Gavardinas, K., Kim, E. J., Matthews, D. P., Staszak, M. A., Coffey, D. S., Shaw, B. W., Cassidy, K. C., & Brier, R. A. (2014). Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm. ACS medicinal chemistry letters, 5(10), 1138-1142. Janga, S. R., Shah, M., Ju, Y., Meng, Z., Edman, M. C., & Hamm-Alvarez, S. F. (2019). Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjögren’s Syndrome. Biomarkers, 24(1), 91-102. Kang, S.-m., Yoon, M.-H., Ahn, J., Kim, J.-E., Kim, S. Y., Kang, S. Y., Joo, J., Park, S., Cho, J.-H., & Woo, T.-G. (2021). Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Communications Biology, 4(1), 5. Kieran, M. W., Gordon, L., & Kleinman, M. (2007). New approaches to progeria. Pediatrics, 120(4), 834-841. Kirschke, H., Wiederanders, B., Brömme, D., & Rinne, A. (1989). Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochemical Journal, 264(2), 467-473. Koblan, L. W., Erdos, M. R., Wilson, C., Cabral, W. A., Levy, J. M., Xiong, Z.-M., Tavarez, U. L., Davison, L. M., Gete, Y. G., & Mao, X. (2021). In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 589(7843), 608-614. Kragstrup, T., Kjaer, M., & Mackey, A. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scandinavian journal of medicine & science in sports, 21(6), 749-757. Kramer, L., Turk, D., & Turk, B. (2017). The future of cysteine cathepsins in disease management. Trends in pharmacological sciences, 38(10), 873-898. Lecaille, F., Kaleta, J., & Brömme, D. (2002). Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chemical reviews, 102(12), 4459-4488. Lee, J. S., Hale, C. M., Panorchan, P., Khatau, S. B., George, J. P., Tseng, Y., Stewart, C. L., Hodzic, D., & Wirtz, D. (2007). Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophysical journal, 93(7), 2542-2552. Li, X., Wang, Z., Tong, H., Yan, Y., & Li, S. (2018). Effects of COL8A1 on the proliferation of muscle‐derived satellite cells. Cell Biology International, 42(9), 1132-1140. Lieber, R. L. (2002). Skeletal muscle structure, function, and plasticity. Lippincott Williams & Wilkins. Lin, F., & Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. Journal of Biological Chemistry, 268(22), 16321-16326. Mann, C. J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A. L., & Muñoz-Cánoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle, 1, 1-20. Margalit, A., Fridkin, A., Dayani, Y., Prokocimer, M., & Enosh, A. (2003). The nuclear lamina and its functions in the nucleus. International review of cytology, 226, 1. Martin, S., Moffitt, K., McDowell, A., Greenan, C., Bright‐Thomas, R., Jones, A., Webb, A., & Elborn, J. (2010). Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatric pulmonology, 45(9), 860-868. McClung, J., Davis, J., & Carson, J. (2007). Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats. Experimental physiology, 92(1), 219-232. McDowell, S. H., Gallaher, S. A., Burden, R. E., & Scott, C. J. (2020). Leading the invasion: The role of Cathepsin S in the tumour microenvironment. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1867(10), 118781. McGrath, M. E. (1999). The lysosomal cysteine proteases. Annual review of biophysics and biomolecular structure, 28(1), 181-204. Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, E. Y., Mandal, P. K., Vera, E., Shim, J.-w., & Kriks, S. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell stem cell, 13(6), 691-705. Miyata, J., Tani, K., Sato, K., Otsuka, S., Urata, T., Lkhagvaa, B., Furukawa, C., Sano, N., & Sone, S. (2007). Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatology international, 27, 375-382. Moulson, C. L., Fong, L. G., Gardner, J. M., Farber, E. A., Go, G., Passariello, A., Grange, D. K., Young, S. G., & Miner, J. H. (2007). Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Human mutation, 28(9), 882-889. Müller, S., Dennemärker, J., & Reinheckel, T. (2012). Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(1), 34-43. Oishi, Y., & Manabe, I. (2018). Macrophages in inflammation, repair and regeneration. International immunology, 30(11), 511-528. Olive, M., Harten, I., Mitchell, R., Beers, J. K., Djabali, K., Cao, K., Erdos, M. R., Blair, C., Funke, B., & Smoot, L. (2010). Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arteriosclerosis, thrombosis, and vascular biology, 30(11), 2301-2309. Olson, O. C., & Joyce, J. A. (2015). Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nature Reviews Cancer, 15(12), 712-729. Otto, H.-H., & Schirmeister, T. (1997). Cysteine proteases and their inhibitors. Chemical reviews, 97(1), 133-172. Patel, S., Homaei, A., El-Seedi, H. R., & Akhtar, N. (2018). Cathepsins: Proteases that are vital for survival but can also be fatal. Biomedicine & Pharmacotherapy, 105, 526-532. Payne, C. D., Deeg, M. A., Chan, M., Tan, L. H., LaBell, E. S., Shen, T., & DeBrota, D. J. (2014). Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY 3000328, in healthy subjects. British journal of clinical pharmacology, 78(6), 1334-1342. Plenz, G. A., Deng, M. C., Robenek, H., & Völker, W. (2003). Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis, 166(1), 1-11. Puttaraju, M., Jackson, M., Klein, S., Shilo, A., Bennett, C. F., Gordon, L., Rigo, F., & Misteli, T. (2021). Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nature medicine, 27(3), 526-535. Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. The Journal of clinical investigation, 120(10), 3421-3431. Riese, R. J., Wolf, P. R., Brömme, D., Natkin, L. R., Villadangos, J. A., Ploegh, H. L., & Chapman, H. A. (1996). Essential role for cathepsin S in MHC class II–associated invariant chain processing and peptide loading. Immunity, 4(4), 357-366. Rupanagudi, K. V., Kulkarni, O. P., Lichtnekert, J., Darisipudi, M. N., Mulay, S. R., Schott, B., Gruner, S., Haap, W., Hartmann, G., & Anders, H.-J. (2015). Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Annals of the rheumatic diseases, 74(2), 452-463. Saftig, P., & Brix, K. (2005). Lysosomal proteases: Revival of the sleeping beauty. Lysosomes, 50-59. Sage, H., Trüeb, B., & Bornstein, P. (1983). Biosynthetic and structural properties of endothelial cell type VIII collagen. Journal of Biological Chemistry, 258(21), 13391-13401. Segawa, M., Fukada, S.-i., Yamamoto, Y., Yahagi, H., Kanematsu, M., Sato, M., Ito, T., Uezumi, A., Hayashi, S. i., & Miyagoe-Suzuki, Y. (2008). Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Experimental cell research, 314(17), 3232-3244. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual review of biochemistry, 78, 929-958. Skoumal, M., Haberhauer, G., Kolarz, G., Hawa, G., Woloszczuk, W., & Klingler, A. (2004). Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther, 7, 1-6. Skrbic, B., Engebretsen, K. V., Strand, M. E., Lunde, I. G., Herum, K. M., Marstein, H. S., Sjaastad, I., Lunde, P. K., Carlson, C. R., & Christensen, G. (2015). Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovascular research, 106(1), 32-42. Smith, L. R., & Barton, E. R. (2018). Regulation of fibrosis in muscular dystrophy. Matrix Biology, 68, 602-615. Smyth, P., Sasiwachirangkul, J., Williams, R., & Scott, C. J. (2022). Cathepsin S (CTSS) activity in health and disease-A treasure trove of untapped clinical potential. Molecular Aspects of Medicine, 88, 101106. Spiro, A. J., Shy, G. M., & Gonatas, N. K. (1966). Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Archives of neurology, 14(1), 1-14. https://jamanetwork.com/journals/jamaneurology/article-abstract/566298 Stewart, C. L., Roux, K. J., & Burke, B. (2007). Blurring the boundary: the nuclear envelope extends its reach. Science, 318(5855), 1408-1412. Stoka, V., Turk, B., & Turk, V. (2005). Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB life, 57(4‐5), 347-353. Sukhova, G. K., Shi, G.-P., Simon, D. I., Chapman, H. A., & Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. The Journal of clinical investigation, 102(3), 576-583. Sukhova, G. K., Zhang, Y., Pan, J.-H., Wada, Y., Yamamoto, T., Naito, M., Kodama, T., Tsimikas, S., Witztum, J. L., & Lu, M. L. (2003). Deficiency of cathepsin S reduces atherosclerosis in LDL receptor–deficient mice. The Journal of clinical investigation, 111(6), 897-906. Suzuki, M., Jeng, L. J., Chefo, S., Wang, Y., Price, D., Li, X., Wang, J., Li, R.-J., Ma, L., & Yang, Y. (2023). FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genetics in Medicine, 25(2), 100335. Tang, J., & Wong, R. N. (1987). Evolution in the structure and function of aspartic proteases. Journal of cellular biochemistry, 33(1), 53-63. Theron, M., Bentley, D., Nagel, S., Manchester, M., Gerg, M., Schindler, T., Silva, A., Ecabert, B., Teixeira, P., & Perret, C. (2017). Pharmacodynamic monitoring of RO5459072, a small molecule inhibitor of cathepsin S. Frontiers in immunology, 8, 806. Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(2), R345-R353. Tidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(5), R1173-R1187. Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., & Molkentin, J. D. (2016). Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice. Journal of Biological Chemistry, 291(19), 9920-9928. Trask, R. V., & Billadello, J. J. (1990). Tissue-specific distribution and developmental regulation of M and B creatine kinase mRNAs. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1049(2), 182-188. Turk, B., Bieth, J. G., Björk, I., Dolenc, I., Turk, D., Cimerman, N., Kos, J., Čolič, A., Stoka, V., & Turk, V. (1995). Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biological chemistry Hoppe-Seyler, 376(4), 225-230. Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 98-111. Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(1), 68-88. Turk, V., Turk, B., & Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO journal, 20(17), 4629-4633. Turkenburg, J. P., Lamers, M. B., Brzozowski, A. M., Wright, L. M., Hubbard, R. E., Sturt, S. L., & Williams, D. H. (2002). Structure of a Cys25→ Ser mutant of human cathepsin S. Acta Crystallographica Section D: Biological Crystallography, 58(3), 451-455. Turnšek, T., Kregar, I., & Lebez, D. (1975). Acid sulphydryl protease from calf lymph nodes. Biochimica et Biophysica Acta (BBA)-Enzymology, 403(2), 514-520. Uitto, J., & Kouba, D. (2000). Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. Journal of dermatological science, 24, S60-S69. Ullrich, N. J., & Gordon, L. B. (2015). Hutchinson–Gilford progeria syndrome. Handbook of clinical neurology, 132, 249-264. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., & Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Current pharmaceutical design, 13(4), 387-403. Vergnes, L., Péterfy, M., Bergo, M. O., Young, S. G., & Reue, K. (2004). Lamin B1 is required for mouse development and nuclear integrity. Proceedings of the National Academy of Sciences, 101(28), 10428-10433. Verrecchia, F., & Mauviel, A. (2004). TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression. Cellular signalling, 16(8), 873-880. Verrecchia, F., & Mauviel, A. (2007). Transforming growth factor-β and fibrosis. World journal of gastroenterology: WJG, 13(22), 3056. Vizovišek, M., Fonović, M., & Turk, B. (2019). Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biology, 75, 141-159. Wang, B., Li, J., & Xiao, X. (2000). Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proceedings of the National Academy of Sciences, 97(25), 13714-13719. Wang, W. P., Wang, J. Y., Lin, W. H., Kao, C. H., Hung, M. C., Teng, Y. C., Tsai, T. F., & Chi, Y. H. (2020). Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell, 19(2), e13090. Weitoft, T., Larsson, A., Manivel, V. A., Lysholm, J., Knight, A., & Rönnelid, J. (2015). Cathepsin S and cathepsin L in serum and synovial fluid in rheumatoid arthritis with and without autoantibodies. Rheumatology, 54(10), 1923-1928. Wilkinson, R. D., Williams, R., Scott, C. J., & Burden, R. E. (2015). Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biological chemistry, 396(8), 867-882. Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214(2), 199-210. Xie, L., Zhang, S., Huang, L., Peng, Z., Lu, H., He, Q., Chen, R., Hu, L., Wang, B., & Sun, B. (2023). Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia–reperfusion injury. Brain, Behavior, and Immunity, 107, 330-344. Xu, J., Li, D., Ke, Z., Liu, R., Maubach, G., & Zhuo, L. (2009). Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Molecular Medicine Reports, 2(5), 713-718. Yadati, T., Houben, T., Bitorina, A., & Shiri-Sverdlov, R. (2020). The ins and outs of cathepsins: Physiological function and role in disease management. Cells, 9(7), 1679. Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological reviews, 93(1), 23-67. Yin, M., Soikkeli, J., Jahkola, T., Virolainen, S., Saksela, O., & Hölttä, E. (2012). TGF-β signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. The American journal of pathology, 181(6), 2202-2216. Young, L., Radebaugh, J., Rubin, P., Sensenbrenner, J., Fiorelli, G., & McKusick, V. (1971). New syndrome manifested by mandibular hypoplasia, acroosteolysis, stiff joints and cutaneous atrophy (mandibuloacral dysplasia) in two unrelated boys. Birth defects original article series, 7(7), 291-297. Zhou, Y.-B., Zhou, H., Li, L., Kang, Y., Cao, X., Wu, Z.-Y., Ding, L., Sethi, G., & Bian, J.-S. (2019). Hydrogen sulfide prevents elastin loss and attenuates calcification induced by high glucose in smooth muscle cells through suppression of Stat3/Cathepsin S signaling pathway. International journal of molecular sciences, 20(17), 4202. Zuo, T., Xie, Q., Liu, J., Yang, J., Shi, J., Kong, D., Wang, Y., Zhang, Z., Gao, H., & Zeng, D.-B. (2023). Macrophage-derived cathepsin S remodels the extracellular matrix to promote liver fibrogenesis. Gastroenterology, 165(3), 746-761. e716.
|