帳號:guest(18.117.232.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖能詮
作者(外文):Liaw, Neng-Chyuan
論文名稱(中文):探討Ctss於早衰蛋白導致成年小鼠肌肉退化的功能性作用
論文名稱(外文):To investigate the functional role of Ctss in progerin-induced muscle degeneration in adult mice
指導教授(中文):紀雅惠
汪宏達
指導教授(外文):Chi, Ya-Hui
Wang, Horng-Dar
口試委員(中文):張俊彥
陳律佑
口試委員(外文):Chang, Jang-Yang
Chen, Liuh-Yow
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:110080597
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:核纖層蛋白A早衰蛋白組織蛋白酶S骨骼肌纖維化
外文關鍵詞:Lamin AProgerinCathepsin SSkeletal musclefibrosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
核纖層蛋白A (Lamin A)是構成核膜的重要蛋白質,由於基因LMNA 1824 C > T 突變造成轉錄子剪接異常,最終產生早衰蛋白(Progerin)。於此我們實驗室建構一種藉由Pgk-Cre/ERT2操縱子控制下,誘導早衰蛋白表現的小鼠模型(Progerin/Pgk-Cre),在小鼠成年後(7-8週大),連續5天對其進行腹腔注射(IP)他莫昔芬(Tamoxifen),誘使早衰蛋白表現,以下將小鼠模型表示為P-PgkCre+(帶有Cre 基因)、P+PgkCre-(帶有Progerin基因)及P+PgkCre+(帶有Progerin以及Cre 基因)。免疫組織化學(IHC)染色分析顯示,成年P+PgkCre+小鼠在誘導早衰蛋白表達後二個月,骨骼肌組織(Femoris)約53.52%的細胞中有早衰蛋白表現;蘇木精-伊紅(H&E)染色分析顯示,骨骼肌中有顯著的病理變化,與P+PgkCre-相比,P+PgkCre+中央核產生的頻率增加41.89% (p<0.0001)且肌核密度增加1.57倍(p=0.0093),在與P+PgkCre-的平均肌纖維橫截面積大小2003.63 μm²相比,P+PgkCre+的平均肌纖維橫截面積為831.83 μm²,顯示整體有減少的趨勢(p=0.0004);天狼星紅(Picro-sirus red)染色分析顯示,在P+PgkCre+中,膠原纖維蛋白佔整體骨骼肌橫截面積的比例達9.39%,與P+PgkCre- (1.63%)相比,提高7.76% (p=0.0009)。在RT-qPCR分析與纖維化相關的基因表現, P+PgkCre+的Tgf-、Col3a1、Eln及Col8a1皆受到上調,分別是P-PgkCre+的1.94倍(p=0.0003)、1.87倍(p=0.0011)、2.30倍(p=0.0319)及5.21倍(p=0.0005),顯示骨骼肌中存在組織纖維化。在P+PgkCre+骨骼肌RNA定序(RNA-seq)的結果中,Ctss表現被上調22.5倍(p=6.16E-29)。先前研究顯示Ctss會對細胞外基質重塑產生影響,敲除Ctss後,膠原纖維蛋白佔P+PgkCre+骨骼肌橫截面積的比例為5.53%,與P+PgkCre+相比下降了3.86%(p=0.0136),在RT-qPCR分析中,P+PgkCre+Ctss-/-的Col8a1表現被下調了1.98倍(p=0.0216),顯示出P+PgkCre+小鼠在Ctss敲除後,可能透過下調Col8a1的表現,以此減輕P+PgkCre+骨骼肌纖維化的產生。因此本研究顯示早衰蛋白表現會誘導成年骨骼肌的退化,並與Ctss之間存在一定的功能性連結。
Lamin A is an important factor constituting the nuclear membrane. Progerin is a truncated toxic form of prelamin A resulted from aberrant splicing of LMNA 1824C > T mutant gene. Here we created a mouse model that inducibly overexpressed with progerin under the control of Pgk-Cre/ERT2 operon. Following the transition to adulthood, mice were intraperitoneally given with tamoxifen for 5 consecutive days. Immunohistochemical analysis revealed that progerin is expressed in approximately 53.52% of the cells in skeletal muscle (femoris) after two months of the induction. Hematoxylin and Eosin staining analysis showed significant pathologic alterations in the skeletal muscle. The frequency of central nuclei has increased by 41.89% (p<0.0001) and the density of nucleus increased by 1.57 times (p<0.0001) in the skeletal muscle of P+PgkCre+ (knockin progerin and Cre) mice compared to P+PgkCre- (knockin only progerin) mice. The cross-sectional area of progerin-expressing myocytes was significantly reduced (831.83 μm²) compared to P+PgkCre- (2003.63 µm²). Picro-sirus red staining analysis revealed that in the skeletal muscle of P+PgkCre+ mice, collagen fiber area ratio reaches 9.39%, which is a 7.76% increase compared to P+PgkCre- (1.6%, p=0.0009). Using RT-qPCR to analyze expression of genes related to fibrosis, we found Tgf-β1, Col3a1, Eln, and Col8a1 in P+PgkCre+ mice were respectively upregulated by 1.94-fold (p=0.0003), 1.87-fold (p=0.0011), 2.30-fold (p=0.0319), and 5.21-fold (p=0.0005) compared to P-PgkCre+ (knockin only Cre) mice. The above results indicate the presence of fibrosis in the skeletal muscle. Using next-generation RNA sequencing, we found the expression of cathepsin S (Ctss) was significantly upregulated in the skeletal muscle. Ctss is known to have a role in extracellular matrix remodeling. In this study, the collagen fiber area ratio in the skeletal muscle of P+PgkCre+Ctss-/- mice was 5.53%, which is a 3.86% decrease (p=0.0136) compared to P+PgkCre+ mice (9.39%). The expression of Col8a1 was reduced by 1.98-fold (p=0.0216) in P+PgkCre+Ctss-/- compared to P+PgkCre+ mice. These results suggest that Ctss contributes to skeletal muscle fibrosis in P+PgkCre+ mice accompanying with overexpression of Col8a1. In conclusion, this study shows a functional link between Ctss and progerin-induced skeletal muscle degeneration.
目錄

摘要 I
Abstract III
致謝 V
目錄 VI
圖表目錄 XI
附錄目錄 XII
縮寫與全名對照表 XIII
壹、前言 1
1-1 背景 1

1-2 核纖層蛋白(Nuclear lamina) 1
1-2-1 基本介紹 1
1-2-2 LMNA與核纖層蛋白A/C (Lamin A/C) 2
1-2-3 LMNA突變與其相關疾病 2

1-3 早衰蛋白(Progerin) 3
1-3-1 基本介紹 3
1-3-2 早衰蛋白與HGPS 3
1-3-3 早衰症與正常老化 4

1-4 骨骼肌 4
1-4-1 基本介紹 4
1-4-2 骨骼肌中央核 5
1-4-3 骨骼肌中央核與相關疾病 5
1-4-4 骨骼肌與細胞外基質(ECM) 5
1-4-5 骨骼肌的修復與再生 6

1-5 組織纖維化 6

1-6 組織蛋白酶(Cathepsin) 7
1-6-1 基本介紹 7
1-6-2 胱氨酸蛋白酶(Cysteine cathepsin protease) 7
1-6-3 組織蛋白酶S(Cathepsin S, Ctss) 8
1-6-4 組織蛋白酶S與相關疾病 9
1-6-5 組織蛋白酶S抑制劑 9

1-7 小鼠模型選用 10

1-8 研究動機與目的 10


貳、材料與實驗方法 11
2-1 實驗材料 11
2-1-1 實驗動物 11
2-1-1-1 Ctss knockout小鼠 11
2-1-1-2 Progerin knockin小鼠 12
2-1-1-3 Pgk1-RFP,-Cre/ERT2小鼠 12
2-1-2 實驗試劑及藥品 13

2-2 實驗方法 14
2-2-1 Polymerase chain reaction (PCR) 14
2-2-2 限制酶切割 15
2-2-3 凝膠電泳 15
2-2-4 辨識基因型(Genotyping) 16
2-2-5 動物組織處理 17
2-2-6 組織切片及染色 17
2-2-6-1 備製組織切片 17
2-2-6-2 蘇木精-伊紅染色(Hematoxylin and Eosin Stain) 18
2-2-6-3 免疫組織化學染色(Immunohistochemistry) 18
2-2-6-4 天狼星紅染色法(Picro-sirius Red Stain) 19
2-2-7 動物組織RNA樣本萃取、純化及定量 20
2-2-7-1 利用TRIzol萃取組織RNA 20
2-2-7-2 利用Column萃取組織RNA -進行再純化 20
2-2-7-3 RNA定量 21
2-2-8 RT-qPCR 21
2-2-8-1 反轉錄(Reverse Transcription, RT) 21
2-2-8-2 qPCR 22
2-2-9 蛋白質樣本備製 23
2-2-10 西方墨點法(Western Blot) 24
2-2-10-1 SDS-PAGE 24
2-2-10-2 SDS-polyacrylamide電泳 24
2-2-10-3 轉漬(Transfer) 25
2-2-10-4 封閉(Blocking)、一級抗體(1° Antibody)及二級抗體(2° Antibody) 26
2-2-10-5 抗體辨識顯影成像 26
2-2-11 統計分析 27

參、結果 28
3-1 Progerin/Pgk-Cre小鼠模型及動物實驗設計 28

3-2 Tamoxifen誘導早衰蛋白表現後,在組織中各時期的表現率,並在骨骼肌組織中具有顯著性差異 28

3-3 早衰蛋白導致成年小鼠的皮下脂肪層及皮下肌肉層厚度減少 29

3-4 誘導早衰蛋白表現二個月後,導致成年小鼠骨骼肌中產生大量中央核且伴隨著肌核密度的增加 30

3-5 早衰蛋白導致成年小鼠骨骼肌的肌纖維橫截面積縮減及組織纖維化產生 31

3-6 成年早衰小鼠骨骼肌中,Tgf-1、Col3a1、Eln及Col8a1表現量上調 32

3-7 RNA-seq結果顯示Cysteine cathepsin家族成員在P+PgkCre+小鼠的Femoris中被顯著性上調 33

3-8 早衰蛋白導致成年小鼠骨骼肌的Ctss及Ctss表現上調 33

3-9 Ctss敲除的早衰小鼠獲取方式及小鼠體重變化 34

3-10 敲除Ctss降低成年早衰小鼠骨骼肌中央核頻率、增加肌纖維橫截面積並減輕纖維化 35

3-11 成年早衰小鼠在Ctss敲除後,Col8a1的表現量被下調 36

肆、討論 37
伍、圖表 43
陸、參考文獻 63
柒、附錄 75





圖表目錄

表一、 RNA-seq結果,在P+PgkCre+小鼠的Femoris中,Cysteine cathepsin家族成員皆被顯著性上調 43
圖一、 Progerin/Pgk-Cre小鼠模型實驗設計及各基因型小鼠體重變化 44
圖二、 Tamoxifen誘導早衰蛋白表現後,在組織中各時期的表現率,並在骨骼肌組織中具有顯著性差異 46
圖三、 早衰蛋白導致成年小鼠的皮下脂肪層及皮下肌肉層厚度減少 48
圖四、 誘導早衰蛋白表現二個月後,導致成年小鼠骨骼肌中產生大量中央核且伴隨著肌核密度的增加 50
圖五、 早衰蛋白導致成年小鼠骨骼肌的肌纖維橫截面積縮減及組織纖維化產生 53
圖六、 成年早衰小鼠骨骼肌中,Tgf-1、Col3a1、Eln及Col8a1的表現量上調 54
圖七、 早衰蛋白導致成年小鼠骨骼肌的Ctss及Ctss表現上調 56
圖八、 Progerin/Pgk-Cre/Ctss-/-各基因型小鼠體重變化 57
圖九、 敲除Ctss降低成年早衰小鼠骨骼肌中央核頻率、增加肌纖維橫截面積並減輕纖維化 60
圖十、 成年早衰小鼠在Ctss敲除後,Col8a1的表現量被下調 62






附錄目錄

附錄一、 免疫組織化學染色分析,各時期早衰蛋白表現於十種組織細胞 75
附錄二、 誘導早衰蛋白表現後二個月,早衰小鼠九種組織中Ctss的表現量 79
附錄三、 膠原纖維量化統計方法示意圖 81
附錄四、 誘導早衰蛋白表現後二個月,早衰小鼠的Femoris中Col1a1及Col1a2表現量 82
附錄五、 小鼠qPCR引子序列表 83
Benson, E. K., Lee, S. W., & Aaronson, S. A. (2010). Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. Journal of cell science, 123(15), 2605-2612.
Bentley, D., Fisher, B. A., Barone, F., Kolb, F. A., & Attley, G. (2023). A randomized, double-blind, placebo-controlled, parallel group study on the effects of a cathepsin S inhibitor in primary Sjögren’s syndrome. Rheumatology, kead092.
Bi, P., Yue, F., Sato, Y., Wirbisky, S., Liu, W., Shan, T., Wen, Y., Zhou, D., Freeman, J., & Kuang, S. (2016). Stage-specific effects of Notch activation during skeletal myogenesis. Elife, 5, e17355.
Bonne, G., Barletta, M. R. D., Varnous, S., Bécane, H.-M., Hammouda, E.-H., Merlini, L., Muntoni, F., Greenberg, C. R., Gary, F., & Urtizberea, J.-A. (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature genetics, 21(3), 285-288.
Brown, R., Nath, S., Lora, A., Samaha, G., Elgamal, Z., Kaiser, R., Taggart, C., Weldon, S., & Geraghty, P. (2020). Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respiratory Research, 21, 1-17.
Brüning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Hörsch, D., Accili, D., Goodyear, L. J., & Kahn, C. R. (1998). A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Molecular cell, 2(5), 559-569.
Bruusgaard, J., Liestøl, K., Ekmark, M., Kollstad, K., & Gundersen, K. (2003). Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. The Journal of physiology, 551(2), 467-478.
Butin-Israeli, V., Adam, S. A., Goldman, A. E., & Goldman, R. D. (2012). Nuclear lamin functions and disease. Trends in genetics, 28(9), 464-471.
Cadiñanos, J., Varela, I., López-Otín, C., & Freije, J. M. (2005). From immature lamin to premature aging: molecular pathways and therapeutic opportunities. Cell Cycle, 4(12), 1732-1735.
Cadot, B., Gache, V., Vasyutina, E., Falcone, S., Birchmeier, C., & Gomes, E. R. (2012). Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO reports, 13(8), 741-749.
Camozzi, D., Capanni, C., Cenni, V., Mattioli, E., Columbaro, M., Squarzoni, S., & Lattanzi, G. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics: Focus on laminopathies. Nucleus, 5(5), 427-440.
Capell, B. C., Erdos, M. R., Madigan, J. P., Fiordalisi, J. J., Varga, R., Conneely, K. N., Gordon, L. B., Der, C. J., Cox, A. D., & Collins, F. S. (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences, 102(36), 12879-12884.
Capers, C. R. (1960). Multinucleation of skeletal muscle in vitro. The Journal of Cell Biology, 7(3), 559-565.
Cenni, V., Capanni, C., Mattioli, E., Schena, E., Squarzoni, S., Bacalini, M. G., Garagnani, P., Salvioli, S., Franceschi, C., & Lattanzi, G. (2020). Lamin A involvement in ageing processes. Ageing Research Reviews, 62, 101073.
Cenni, V., D’Apice, M. R., Garagnani, P., Columbaro, M., Novelli, G., Franceschi, C., & Lattanzi, G. (2018). Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Research Reviews, 42, 1-13.
Chang, C.-J., Hsu, H.-C., Ho, W.-J., Chang, G.-J., Pang, J.-H. S., Chen, W.-J., Huang, C.-C., & Lai, Y.-J. (2019). Cathepsin S promotes the development of pulmonary arterial hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317(1), L1-L13.
Chapman, H. A., Riese, R. J., & Shi, G.-P. (1997). Emerging roles for cysteine proteases in human biology. Annual review of physiology, 59(1), 63-88.
Chazaud, B., Brigitte, M., Yacoub-Youssef, H., Arnold, L., Gherardi, R., Sonnet, C., Lafuste, P., & Chretien, F. (2009). Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exercise and sport sciences reviews, 37(1), 18-22.
Chen, C., Ma, H., Zhang, F., Chen, L., Xing, X., Wang, S., Zhang, X., & Luo, Y. (2014). Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One, 9(9), e108038.
Chen, L., Lee, L., Kudlow, B. A., Dos Santos, H. G., Sletvold, O., Shafeghati, Y., Botha, E. G., Garg, A., Hanson, N. B., & Martin, G. M. (2003). LMNA mutations in atypical Werner's syndrome. The Lancet, 362(9382), 440-445.
Chen, W.-J., Lin, I.-H., Lee, C.-W., & Chen, Y.-F. (2021). Aged skeletal muscle retains the ability to remodel extracellular matrix for degradation of collagen deposition after muscle injury. International journal of molecular sciences, 22(4), 2123.
Chi, Y.-H., Chen, Z.-J., & Jeang, K.-T. (2009). The nuclear envelopathies and human diseases. Journal of biomedical science, 16, 1-8.
Coppedè, F. (2013). The epidemiology of premature aging and associated comorbidities. Clinical interventions in aging, 1023-1032.
Creasy, B. M., & McCoy, K. L. (2011). Cytokines regulate cysteine cathepsins during TLR responses. Cellular immunology, 267(1), 56-66.
De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annual review of physiology, 28(1), 435-492.
De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich, A., & Le Merrer, M. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055-2055.
DeBusk, F. L. (1972). The Hutchinson-Gilford progeria syndrome: report of 4 cases and review of the literature. The Journal of pediatrics, 80(4), 697-724.
Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., & Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes & development, 22(7), 832-853.
Delaney, K., Kasprzycka, P., Ciemerych, M. A., & Zimowska, M. (2017). The role of TGF‐β1 during skeletal muscle regeneration. Cell Biology International, 41(7), 706-715.
Dittmer, T. A., & Misteli, T. (2011). The lamin protein family. Genome biology, 12(5), 1-14.
Duance, V., Restall, D., Beard, H., Bourne, F., & Bailey, A. (1977). The location of three collagen types in skeletal muscle. FEBS letters, 79(2), 248-252.
Dubik, N., & Mai, S. (2020). Lamin A/C: function in normal and tumor cells. Cancers, 12(12), 3688.
Dubowitz, V., Sewry, C. A., & Oldfors, A. (2020). Muscle Biopsy E-Book: A Practical Approach. Elsevier Health Sciences.
Duddy, W., Duguez, S., Johnston, H., Cohen, T. V., Phadke, A., Gordish-Dressman, H., Nagaraju, K., Gnocchi, V., Low, S., & Partridge, T. (2015). Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skeletal Muscle, 5(1), 1-18.
Erdos, M. R., Cabral, W. A., Tavarez, U. L., Cao, K., Gvozdenovic-Jeremic, J., Narisu, N., Zerfas, P. M., Crumley, S., Boku, Y., & Hanson, G. (2021). A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nature medicine, 27(3), 536-545.
Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., & Berglund, P. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature, 423(6937), 293-298.
Fan, Q., Wang, X., Zhang, H., Li, C., Fan, J., & Xu, J. (2012). Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro. Biochemical and Biophysical Research Communications, 425(4), 703-710.
Folker, E. S., & Baylies, M. K. (2013). Nuclear positioning in muscle development and disease. Frontiers in physiology, 4, 363.
Folker, E. S., Östlund, C., Luxton, G. G., Worman, H. J., & Gundersen, G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proceedings of the National Academy of Sciences, 108(1), 131-136.
Frontera, W. R., & Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. Calcified tissue international, 96, 183-195.
Gelb, B. D., Shi, G.-P., Chapman, H. A., & Desnick, R. J. (1996). Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 273(5279), 1236-1238.
Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—structure, function, and biosynthesis. Advanced drug delivery reviews, 55(12), 1531-1546.
Geraghty, P., Greene, C. M., O'Mahony, M., O'Neill, S. J., Taggart, C. C., & McElvaney, N. G. (2007). Secretory leucocyte protease inhibitor inhibits interferon-γ-induced cathepsin S expression. Journal of Biological Chemistry, 282(46), 33389-33395.
Gil-Cayuela, C., Roselló-LLetí, E., Ortega, A., Tarazón, E., Triviño, J. C., Martínez-Dolz, L., González-Juanatey, J. R., Lago, F., Portolés, M., & Rivera, M. (2016). New altered non-fibrillar collagens in human dilated cardiomyopathy: role in the remodeling process. PLoS One, 11(12), e0168130.
Gilford, H. (1904). Ateleiosis and progeria: continuous youth and premature old age. Brit Med J, 2, 914-918.
Gillies, A. R., & Lieber, R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle & nerve, 44(3), 318-331.
Glynn, M. W., & Glover, T. W. (2005). Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Human molecular genetics, 14(20), 2959-2969.
Gocheva, V., Wang, H.-W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., Berman, T., & Joyce, J. A. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes & development, 24(3), 241-255.
Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., Gruenbaum, Y., Khuon, S., Mendez, M., & Varga, R. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences, 101(24), 8963-8968.
Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Research Reviews, 33, 18-29.
Gordon, L. B., Brown, W. T., & Collins, F. S. (2019). Hutchinson-Gilford progeria syndrome.
Gordon, L. B., Norris, W., Hamren, S., Goodson, R., LeClair, J., Massaro, J., Lyass, A., D’Agostino Sr, R. B., Tuminelli, K., & Kieran, M. W. (2023). Plasma progerin in patients with Hutchinson-Gilford progeria syndrome: immunoassay development and clinical evaluation. Circulation, 147(23), 1734-1744.
Gordon, L. B., Shappell, H., Massaro, J., D’Agostino, R. B., Brazier, J., Campbell, S. E., Kleinman, M. E., & Kieran, M. W. (2018). Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. Jama, 319(16), 1687-1695.
Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K., & Wilson, K. L. (2005). The nuclear lamina comes of age. Nature reviews Molecular cell biology, 6(1), 21-31.
Gruenbaum, Y., Wilson, K. L., Harel, A., Goldberg, M., & Cohen, M. (2000). Nuclear lamins—structural proteins with fundamental functions. Journal of structural biology, 129(2-3), 313-323.
Gueneau, L., Bertrand, A. T., Jais, J.-P., Salih, M. A., Stojkovic, T., Wehnert, M., Hoeltzenbein, M., Spuler, S., Saitoh, S., & Verschueren, A. (2009). Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy. The American Journal of Human Genetics, 85(3), 338-353.
GUINEC, N., DALET-FUMERON, V., & PAGANO, M. (1993). “In vitro” Study of Basement Membrane Degradation by the Cysteine Proteinases, Cathepsins B, B-Like and L. Digestion of Collagen IV, Laminin, Fibronectin, and Release of Gelatinase Activities front Basement Membrane Fibronectin.
Hashimoto, Y., Kakegawa, H., Narita, Y., Hachiya, Y., Hayakawa, T., Kos, J., Turk, V., & Katunuma, N. (2001). Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochemical and Biophysical Research Communications, 283(2), 334-339.
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical reviews, 102(12), 4501-4524.
Hennekam, R. C. (2006). Hutchinson–Gilford progeria syndrome: review of the phenotype. American journal of medical genetics Part A, 140(23), 2603-2624.
Honey, K., & Rudensky, A. Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology, 3(6), 472-482.
Hsing, L. C., & Rudensky, A. Y. (2005). The lysosomal cysteine proteases in MHC class II antigen presentation. Immunological reviews, 207(1), 229-241.
Ikeda, Y., Ikata, T., Mishiro, T., Nakano, S., Ikebe, M., & Yasuoka, S. (2000). Cathepsins B and L in synovial fluids from patients with rheumatoid arthritis and the effect of cathepsin B on the activation of pro-urokinase. JOURNAL OF MEDICAL INVESTIGATION, 47(1/2), 61-75.
Jadhav, P. K., Schiffler, M. A., Gavardinas, K., Kim, E. J., Matthews, D. P., Staszak, M. A., Coffey, D. S., Shaw, B. W., Cassidy, K. C., & Brier, R. A. (2014). Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm. ACS medicinal chemistry letters, 5(10), 1138-1142.
Janga, S. R., Shah, M., Ju, Y., Meng, Z., Edman, M. C., & Hamm-Alvarez, S. F. (2019). Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjögren’s Syndrome. Biomarkers, 24(1), 91-102.
Kang, S.-m., Yoon, M.-H., Ahn, J., Kim, J.-E., Kim, S. Y., Kang, S. Y., Joo, J., Park, S., Cho, J.-H., & Woo, T.-G. (2021). Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Communications Biology, 4(1), 5.
Kieran, M. W., Gordon, L., & Kleinman, M. (2007). New approaches to progeria. Pediatrics, 120(4), 834-841.
Kirschke, H., Wiederanders, B., Brömme, D., & Rinne, A. (1989). Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochemical Journal, 264(2), 467-473.
Koblan, L. W., Erdos, M. R., Wilson, C., Cabral, W. A., Levy, J. M., Xiong, Z.-M., Tavarez, U. L., Davison, L. M., Gete, Y. G., & Mao, X. (2021). In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 589(7843), 608-614.
Kragstrup, T., Kjaer, M., & Mackey, A. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scandinavian journal of medicine & science in sports, 21(6), 749-757.
Kramer, L., Turk, D., & Turk, B. (2017). The future of cysteine cathepsins in disease management. Trends in pharmacological sciences, 38(10), 873-898.
Lecaille, F., Kaleta, J., & Brömme, D. (2002). Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chemical reviews, 102(12), 4459-4488.
Lee, J. S., Hale, C. M., Panorchan, P., Khatau, S. B., George, J. P., Tseng, Y., Stewart, C. L., Hodzic, D., & Wirtz, D. (2007). Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophysical journal, 93(7), 2542-2552.
Li, X., Wang, Z., Tong, H., Yan, Y., & Li, S. (2018). Effects of COL8A1 on the proliferation of muscle‐derived satellite cells. Cell Biology International, 42(9), 1132-1140.
Lieber, R. L. (2002). Skeletal muscle structure, function, and plasticity. Lippincott Williams & Wilkins.
Lin, F., & Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. Journal of Biological Chemistry, 268(22), 16321-16326.
Mann, C. J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A. L., & Muñoz-Cánoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle, 1, 1-20.
Margalit, A., Fridkin, A., Dayani, Y., Prokocimer, M., & Enosh, A. (2003). The nuclear lamina and its functions in the nucleus. International review of cytology, 226, 1.
Martin, S., Moffitt, K., McDowell, A., Greenan, C., Bright‐Thomas, R., Jones, A., Webb, A., & Elborn, J. (2010). Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatric pulmonology, 45(9), 860-868.
McClung, J., Davis, J., & Carson, J. (2007). Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats. Experimental physiology, 92(1), 219-232.
McDowell, S. H., Gallaher, S. A., Burden, R. E., & Scott, C. J. (2020). Leading the invasion: The role of Cathepsin S in the tumour microenvironment. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1867(10), 118781.
McGrath, M. E. (1999). The lysosomal cysteine proteases. Annual review of biophysics and biomolecular structure, 28(1), 181-204.
Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, E. Y., Mandal, P. K., Vera, E., Shim, J.-w., & Kriks, S. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell stem cell, 13(6), 691-705.
Miyata, J., Tani, K., Sato, K., Otsuka, S., Urata, T., Lkhagvaa, B., Furukawa, C., Sano, N., & Sone, S. (2007). Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatology international, 27, 375-382.
Moulson, C. L., Fong, L. G., Gardner, J. M., Farber, E. A., Go, G., Passariello, A., Grange, D. K., Young, S. G., & Miner, J. H. (2007). Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Human mutation, 28(9), 882-889.
Müller, S., Dennemärker, J., & Reinheckel, T. (2012). Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(1), 34-43.
Oishi, Y., & Manabe, I. (2018). Macrophages in inflammation, repair and regeneration. International immunology, 30(11), 511-528.
Olive, M., Harten, I., Mitchell, R., Beers, J. K., Djabali, K., Cao, K., Erdos, M. R., Blair, C., Funke, B., & Smoot, L. (2010). Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arteriosclerosis, thrombosis, and vascular biology, 30(11), 2301-2309.
Olson, O. C., & Joyce, J. A. (2015). Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nature Reviews Cancer, 15(12), 712-729.
Otto, H.-H., & Schirmeister, T. (1997). Cysteine proteases and their inhibitors. Chemical reviews, 97(1), 133-172.
Patel, S., Homaei, A., El-Seedi, H. R., & Akhtar, N. (2018). Cathepsins: Proteases that are vital for survival but can also be fatal. Biomedicine & Pharmacotherapy, 105, 526-532.
Payne, C. D., Deeg, M. A., Chan, M., Tan, L. H., LaBell, E. S., Shen, T., & DeBrota, D. J. (2014). Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY 3000328, in healthy subjects. British journal of clinical pharmacology, 78(6), 1334-1342.
Plenz, G. A., Deng, M. C., Robenek, H., & Völker, W. (2003). Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis, 166(1), 1-11.
Puttaraju, M., Jackson, M., Klein, S., Shilo, A., Bennett, C. F., Gordon, L., Rigo, F., & Misteli, T. (2021). Systematic screening identifies therapeutic antisense oligonucleotides for Hutchinson–Gilford progeria syndrome. Nature medicine, 27(3), 526-535.
Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. The Journal of clinical investigation, 120(10), 3421-3431.
Riese, R. J., Wolf, P. R., Brömme, D., Natkin, L. R., Villadangos, J. A., Ploegh, H. L., & Chapman, H. A. (1996). Essential role for cathepsin S in MHC class II–associated invariant chain processing and peptide loading. Immunity, 4(4), 357-366.
Rupanagudi, K. V., Kulkarni, O. P., Lichtnekert, J., Darisipudi, M. N., Mulay, S. R., Schott, B., Gruner, S., Haap, W., Hartmann, G., & Anders, H.-J. (2015). Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Annals of the rheumatic diseases, 74(2), 452-463.
Saftig, P., & Brix, K. (2005). Lysosomal proteases: Revival of the sleeping beauty. Lysosomes, 50-59.
Sage, H., Trüeb, B., & Bornstein, P. (1983). Biosynthetic and structural properties of endothelial cell type VIII collagen. Journal of Biological Chemistry, 258(21), 13391-13401.
Segawa, M., Fukada, S.-i., Yamamoto, Y., Yahagi, H., Kanematsu, M., Sato, M., Ito, T., Uezumi, A., Hayashi, S. i., & Miyagoe-Suzuki, Y. (2008). Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Experimental cell research, 314(17), 3232-3244.
Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual review of biochemistry, 78, 929-958.
Skoumal, M., Haberhauer, G., Kolarz, G., Hawa, G., Woloszczuk, W., & Klingler, A. (2004). Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther, 7, 1-6.
Skrbic, B., Engebretsen, K. V., Strand, M. E., Lunde, I. G., Herum, K. M., Marstein, H. S., Sjaastad, I., Lunde, P. K., Carlson, C. R., & Christensen, G. (2015). Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovascular research, 106(1), 32-42.
Smith, L. R., & Barton, E. R. (2018). Regulation of fibrosis in muscular dystrophy. Matrix Biology, 68, 602-615.
Smyth, P., Sasiwachirangkul, J., Williams, R., & Scott, C. J. (2022). Cathepsin S (CTSS) activity in health and disease-A treasure trove of untapped clinical potential. Molecular Aspects of Medicine, 88, 101106.
Spiro, A. J., Shy, G. M., & Gonatas, N. K. (1966). Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Archives of neurology, 14(1), 1-14. https://jamanetwork.com/journals/jamaneurology/article-abstract/566298
Stewart, C. L., Roux, K. J., & Burke, B. (2007). Blurring the boundary: the nuclear envelope extends its reach. Science, 318(5855), 1408-1412.
Stoka, V., Turk, B., & Turk, V. (2005). Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB life, 57(4‐5), 347-353.
Sukhova, G. K., Shi, G.-P., Simon, D. I., Chapman, H. A., & Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. The Journal of clinical investigation, 102(3), 576-583.
Sukhova, G. K., Zhang, Y., Pan, J.-H., Wada, Y., Yamamoto, T., Naito, M., Kodama, T., Tsimikas, S., Witztum, J. L., & Lu, M. L. (2003). Deficiency of cathepsin S reduces atherosclerosis in LDL receptor–deficient mice. The Journal of clinical investigation, 111(6), 897-906.
Suzuki, M., Jeng, L. J., Chefo, S., Wang, Y., Price, D., Li, X., Wang, J., Li, R.-J., Ma, L., & Yang, Y. (2023). FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genetics in Medicine, 25(2), 100335.
Tang, J., & Wong, R. N. (1987). Evolution in the structure and function of aspartic proteases. Journal of cellular biochemistry, 33(1), 53-63.
Theron, M., Bentley, D., Nagel, S., Manchester, M., Gerg, M., Schindler, T., Silva, A., Ecabert, B., Teixeira, P., & Perret, C. (2017). Pharmacodynamic monitoring of RO5459072, a small molecule inhibitor of cathepsin S. Frontiers in immunology, 8, 806.
Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(2), R345-R353.
Tidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(5), R1173-R1187.
Tjondrokoesoemo, A., Schips, T. G., Sargent, M. A., Vanhoutte, D., Kanisicak, O., Prasad, V., Lin, S.-C. J., Maillet, M., & Molkentin, J. D. (2016). Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice. Journal of Biological Chemistry, 291(19), 9920-9928.
Trask, R. V., & Billadello, J. J. (1990). Tissue-specific distribution and developmental regulation of M and B creatine kinase mRNAs. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1049(2), 182-188.
Turk, B., Bieth, J. G., Björk, I., Dolenc, I., Turk, D., Cimerman, N., Kos, J., Čolič, A., Stoka, V., & Turk, V. (1995). Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biological chemistry Hoppe-Seyler, 376(4), 225-230.
Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 98-111.
Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824(1), 68-88.
Turk, V., Turk, B., & Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO journal, 20(17), 4629-4633.
Turkenburg, J. P., Lamers, M. B., Brzozowski, A. M., Wright, L. M., Hubbard, R. E., Sturt, S. L., & Williams, D. H. (2002). Structure of a Cys25→ Ser mutant of human cathepsin S. Acta Crystallographica Section D: Biological Crystallography, 58(3), 451-455.
Turnšek, T., Kregar, I., & Lebez, D. (1975). Acid sulphydryl protease from calf lymph nodes. Biochimica et Biophysica Acta (BBA)-Enzymology, 403(2), 514-520.
Uitto, J., & Kouba, D. (2000). Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. Journal of dermatological science, 24, S60-S69.
Ullrich, N. J., & Gordon, L. B. (2015). Hutchinson–Gilford progeria syndrome. Handbook of clinical neurology, 132, 249-264.
Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., & Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Current pharmaceutical design, 13(4), 387-403.
Vergnes, L., Péterfy, M., Bergo, M. O., Young, S. G., & Reue, K. (2004). Lamin B1 is required for mouse development and nuclear integrity. Proceedings of the National Academy of Sciences, 101(28), 10428-10433.
Verrecchia, F., & Mauviel, A. (2004). TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression. Cellular signalling, 16(8), 873-880.
Verrecchia, F., & Mauviel, A. (2007). Transforming growth factor-β and fibrosis. World journal of gastroenterology: WJG, 13(22), 3056.
Vizovišek, M., Fonović, M., & Turk, B. (2019). Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biology, 75, 141-159.
Wang, B., Li, J., & Xiao, X. (2000). Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proceedings of the National Academy of Sciences, 97(25), 13714-13719.
Wang, W. P., Wang, J. Y., Lin, W. H., Kao, C. H., Hung, M. C., Teng, Y. C., Tsai, T. F., & Chi, Y. H. (2020). Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell, 19(2), e13090.
Weitoft, T., Larsson, A., Manivel, V. A., Lysholm, J., Knight, A., & Rönnelid, J. (2015). Cathepsin S and cathepsin L in serum and synovial fluid in rheumatoid arthritis with and without autoantibodies. Rheumatology, 54(10), 1923-1928.
Wilkinson, R. D., Williams, R., Scott, C. J., & Burden, R. E. (2015). Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biological chemistry, 396(8), 867-882.
Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214(2), 199-210.
Xie, L., Zhang, S., Huang, L., Peng, Z., Lu, H., He, Q., Chen, R., Hu, L., Wang, B., & Sun, B. (2023). Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia–reperfusion injury. Brain, Behavior, and Immunity, 107, 330-344.
Xu, J., Li, D., Ke, Z., Liu, R., Maubach, G., & Zhuo, L. (2009). Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Molecular Medicine Reports, 2(5), 713-718.
Yadati, T., Houben, T., Bitorina, A., & Shiri-Sverdlov, R. (2020). The ins and outs of cathepsins: Physiological function and role in disease management. Cells, 9(7), 1679.
Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological reviews, 93(1), 23-67.
Yin, M., Soikkeli, J., Jahkola, T., Virolainen, S., Saksela, O., & Hölttä, E. (2012). TGF-β signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. The American journal of pathology, 181(6), 2202-2216.
Young, L., Radebaugh, J., Rubin, P., Sensenbrenner, J., Fiorelli, G., & McKusick, V. (1971). New syndrome manifested by mandibular hypoplasia, acroosteolysis, stiff joints and cutaneous atrophy (mandibuloacral dysplasia) in two unrelated boys. Birth defects original article series, 7(7), 291-297.
Zhou, Y.-B., Zhou, H., Li, L., Kang, Y., Cao, X., Wu, Z.-Y., Ding, L., Sethi, G., & Bian, J.-S. (2019). Hydrogen sulfide prevents elastin loss and attenuates calcification induced by high glucose in smooth muscle cells through suppression of Stat3/Cathepsin S signaling pathway. International journal of molecular sciences, 20(17), 4202.
Zuo, T., Xie, Q., Liu, J., Yang, J., Shi, J., Kong, D., Wang, Y., Zhang, Z., Gao, H., & Zeng, D.-B. (2023). Macrophage-derived cathepsin S remodels the extracellular matrix to promote liver fibrogenesis. Gastroenterology, 165(3), 746-761. e716.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *