帳號:guest(3.147.237.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李昱霆
作者(外文):Li, Yu-Ting
論文名稱(中文):經由結構特性探討抗體鎖的遮蔽能力
論文名稱(外文):Revealing the Blocking Ability of Antibody Locks through Structural Characterization
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping-Chiang
口試委員(中文):鄭添祿
鄭惠春
口試委員(外文):Cheng, Tain-Lu
Cheng, Hui-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:110080564
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:59
中文關鍵詞:單株抗體程式性死亡-1納武單抗抗體鎖
外文關鍵詞:mAbPD-1NivolumabAb-lock
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
單株抗體(mAbs)是治療多種疾病的主要方法,通過針對受影響區域中過度表達
的抗原以實現治療效果。如果抗原在正常細胞中也有表達,抗體也可能結合到正常細胞
的抗原上,可能引起副作用。例如,針對程式性死亡-1(PD-1)的單克隆抗體,如 Nivolumab,
已被用於治療非小細胞肺癌、黑色素瘤和腎細胞癌。然而,如果抗體也結合到正常細胞
中表達的 PD-1 上,這些療法可能會導致免疫介導的反應,如肺炎、結腸炎、肝炎和腎
炎。為了解決這個問題,鄭教授的實驗室開發了通用抗體鎖(Ab locks),可以提高抗體
藥物對疾病的選擇性並減少副作用。他們利用鉸鏈(Hinge)結構作為抗體鎖,通過一
個蛋白酶底物肽連接到抗體上。這種方法增加了抗體對疾病區域的選擇性,減少了副作
用。在這項研究中,使用兩個長度不同的肽,Lu09(26 個氨基酸)和 Lu02(34 個氨基
酸),作為抗體鎖,分別附加到 Nivolumab 的 N 端,形成 pro-Lu02-Ab 和 pro-Lu09-Ab。
使用微量熱泳(MST)定量測定了 pro-Lu09-Ab 和 pro-Lu02-Ab 對 PD-1 的結合親和力。
pro-Lu09-Ab 的 Kd值約為 4.7 μM,而 pro-Lu02-Ab 的 Kd值約為 22 μM,遠高於 Nivolumab
的 Kd 值(通過表面等離子共振(SPR)測定約為 1.5-4 nM)。pro-Lu09-Ab 和 pro-Lu02-
Ab 的晶體結構分別以 2.50 Å 和 2.59 Å 的分辨率確定。我們發現,抗體鎖的覆蓋率越
高,其阻止抗原結合的能力就越強。我們對 pro-Lu09-Fab 和 pro-Lu02-Fab 結構進行的
分析顯示,這兩種抗體鎖都佔據了 PD-1 的結合位點。與此同時,pro-Fabs 中 CDR 的構
象也發生了變化。值得注意的是,pro-Lu09-Fab 和 pro-Lu02-Fab 中 FG-loop 的結合位凹
槽較小,而 Ab lock Lu02 幾乎完全覆蓋了它們。儘管 N-loop 結合位的大小保持不變,
但它們在 pro-Lu09-Fab 和 pro-Lu02-Fab 中卻被抗體鎖完全阻擋。pro-Lu09-Fab 和 pro-
Lu02-Fab 中的抗體鎖覆蓋率分別為 39.4%和 64.9%。然而,pro-Lu09-Fab 的 Kd 值小於
pro-Lu02-Fab,說明其與抗原結合更強,但抗體鎖的阻斷能力較弱。因此,我們的結構
分析證實了抗體鎖覆蓋率與其阻斷效能之間的正相關
Monoclonal antibodies (mAbs) are a leading therapeutic approach for numerous diseases, functioning by targeting overexpressed antigens in affected areas to achieve therapeutic efficacy. If the antigen is expressed in normal cells as well, the antibody may also bind to the antigens in normal cells, potentially causing side effects. As an example, monoclonal antibodies targeting programmed death-1 (PD-1), such as Nivolumab, have been used to treat non-small cell lung cancer, melanoma, and renal cell carcinoma. However, these therapies may result in immune-mediated reactions, such as pneumonitis, colitis, hepatitis, and nephritis, if the antibodies bind to PD-1 expressed in normal cells as well. To address this issue, Professor Cheng’s Lab has developed universal antibody locks (Ab locks) that can improve the disease selectivity of antibody drugs and reduce their side effects. They utilized the hinge domain as an antibody lock, which was connected to the antibody through a protease substrate peptide. This approach increased the selectivity of the antibody for the disease region, reducing side effects. In this study, two different peptides of varying lengths, Lu09 (26 amino acids) and Lu02 (34 amino acids), were utilized as Ab locks and were attached to the N-terminus of Nivolumab to form pro-Lu02-Ab and pro-Lu09-Ab, respectively. Micro-scale thermophoresis (MST) was used to quantify the binding affinity of pro-Lu09-Ab and pro-Lu02-Ab to PD-1. The Kd value for pro-Lu09-Ab was about 4.7 μM, while the Kd value for pro-Lu02-Ab was about 22 μM, which were much higher than that of Nivolumab (about 1.5–4 nM determined by surface plasmon resonance (SPR)). The crystal structures of pro-Lu09-Ab and pro-Lu02-Ab were determined at 2.50 Å and 2.59 Å resolution, respectively. We found that a higher coverage rate of the Ab lock resulted in a stronger ability to block antigen binding. Our analysis of the pro-Lu09-Fab and pro-Lu02-Fab structures revealed that both Ab locks occupied the PD-1 binding site. The conformation of the CDRs in the pro-Fabs also underwent changes. Notably, the grooves for the FG-loop were smaller in both pro-Lu09-Fab and pro-Lu02-Fab, and Ab lock Lu02 almost entirely blocked them. Although the size of the grooves for the N-loop remained unchanged, they were completely obstructed by the Ab locks in both pro-Lu09-Fab and pro-Lu02-Fab. The coverage rates of Ab locks in pro-Lu09-Fab and pro-Lu02-Fab were 39.4% and 64.9%, respectively. However, pro-Lu09-Fab had a smaller Kd value than pro-Lu02-Fab, indicating stronger antigen binding but weaker blocking ability of the Ab lock. In summary, our structural analysis confirmed a direct link between the coverage rates of Ab locks and their blocking efficiency.
Contents
中文摘要.............................................................................................................................i
Abstract............................................................................................................................ iii
Acknowledgements............................................................................................................v
Abbreviations....................................................................................................................vi
Chapter 1. Introduction ......................................................................................................4
1.1. Monoclonal antibodies in therapy.......................................................................4
1.1.1. US FDA approved therapeutic monoclonal antibodies............................4
1.1.2. The structure and function of antibody....................................................4
1.1.3. Immune checkpoint inhibitor for targeted immunotherapy in tumor ......5
1.2. The strategies to prevent severe adverse events from mAb therapy...................6
1.3. How to design an Ab lock with high blocking efficacy......................................9
1.4. Aim 10
Tables and Figures of Chapter 1 ......................................................................................11
Table 1.1. Comparison of different masking strategies of pro-Abs.........................11
Table 1.2. The composition of different IgG hinge-based Ab locks........................12
Table 1.3. The blocking abilities of various pro-Abs with different Ab locks.........13
Table 1.4. The cover rate and blocking abilities of various pro-Abs with different Ab
locks.......................................................................................................14
Figure 1.1. The structure of antibody.......................................................................15
Figure 1.2. The effector mechanisms of antibody....................................................16
Figure 1.3. The applications of therapeutic antibodies. ...........................................17
Figure 1.4. The strategies to increase the selectivity of therapeutic mAbs..............18
Figure 1.5. The cover rate of Ab lock. .....................................................................19
Chapter 2. Materials and Methods...................................................................................20
2.1. Materials ...........................................................................................................20
2.2. Antigen binding assay by Microscale thermophoresis (MST)..........................20
2.3. Determination of the 3D structure of Pro-Lu02-Fab and Pro-Lu09-Fab..........21
2.3.1. Crystallization........................................................................................21
2.3.2. X-ray diffraction Data Collection and Processing .................................21
2.3.3. Structure determination..........................................................................22
2.4. Calculation of cover rate...................................................................................22
2.5. Protein-protein docking of pro-Lu02-Fab and pro-Lu09-Fab ..........................23
Tables and Figures of Chapter 2 ......................................................................................24
Table 2.1. The protein sequences of Fab precursors of Nivolumab.........................24
Chapter 3. Results and Discussion...................................................................................25
3.1. Binding affinity between PD-1 and pro-Lu02-Ab and pro-Lu09-Ab...............25
3.2. Crystal structure Determination of pro-Lu09-Fab and pro-Lu02-Fab..............25
3.3. Structural insights into the shielding effects of Ab locks .................................29
3.4. The PD-1 binding status in pro-Fab predicted by docking ...............................30
Tables and Figures of Chapter 3 ......................................................................................31
Table 3.1. The optimization of crystallization condition of pro-Lu09-Fab. ............31
Table 3.2. Data collection and refinement statistics ................................................32
Figure 3.1. Pro-Ab binding assay by MST. .............................................................34
Figure 3.2. The density fit graphs of pro-Lu09-Fab when MR with different template
structures................................................................................................35
Figure 3.3. Comparison of Nivolumab Fab apo form and PD-1 complex...............36
Figure 3.4. The density fit graphs of pro-Lu02-Fab when MR with different template
structures................................................................................................37
Figure 3.5. The final density fit graphs of pro-Lu09-Fab and pro-Lu02-Fab..........38
Figure 3.6. Side view of pro-Lu09-Fab and pro-Lu02-Fab. ....................................39
Figure 3.7. Top view of pro-Lu09-Fab and pro-Lu02-Fab. .....................................41
Figure 3.8. Comparison of pro-Lu09-Fab and pro-Lu02-Fab..................................42
Figure 3.9. Comparison of pro-Lu09-Fab and Nivolumab Fab...............................43
Figure 3.10. Comparison of pro-Lu02-Fab and Nivolumab Fab.............................44
Figure 3.11. B-factor analysis of pro-Lu09-Fab. .....................................................45
Figure 3.12. B-factor analysis of pro-Lu02-Fab. .....................................................46
Figure 3.13. The AlphaFold similations of pro-Lu09-Fv.........................................47
Figure 3.14. The blocking status of pro-Lu09-Fab and pro-Lu02-Fab....................48
Figure 3.15. The coverage of Ab lock Lu09 and Lu02............................................49
Figure 3.16. The docking results of PD-1 to Nivolumab Fab..................................50
Figure 3.17. The docking results of PD-1 to pro-Lu09-Fab. ...................................51
Figure 3.18. The docking results of PD-1 to pro-Lu02-Fab. ...................................52
Chapter 4. Conclusion......................................................................................................53
References........................................................................................................................56
(1.) Cai, H. H., and Pandit, A. A. (2023) Therapeutic monoclonal antibodies
approved by FDA in 2022 (mini review). Journal of Clinical & Experimental
Immunology 8, 533-535.
(2.) Maiti, R., Patel, B., Patel, N., Patel, M., Patel, A., and Dhanesha, N. (2023)
Antibody drug conjugates as targeted cancer therapy: past development, present
challenges and future opportunities, Arch Pharm Res 46, 361-388.
(3.) Wang, Z., Wang, G., Lu, H., Li, H., Tang, M., and Tong, A. (2022)
Development of therapeutic antibodies for the treatment of diseases, Mol Biomed 3, 35.
(4.) Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., and Wu,
H. C. (2020) Development of therapeutic antibodies for the treatment of diseases, J
Biomed Sci 27, 1.
(5.) Tonks, N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to
disease, Nat Rev Mol Cell Bio 7, 833-846.
(6.) Chiu, M. L., Goulet, D. R., Teplyakov, A., and Gilliland, G. L. (2019)
Antibody Structure and Function: The Basis for Engineering Therapeutics, Antibodies
(Basel) 8.
(7.) Barclay, A. N. (2003) Membrane proteins with immunoglobulin-like domains-
-a master superfamily of interaction molecules, Semin Immunol 15, 215-223.
(8.) Zahavi, D., and Weiner, L. (2020) Monoclonal Antibodies in Cancer Therapy,
Antibodies (Basel) 9.
(9.) Kourie, H. R., and Klastersky, J. (2016) Immune checkpoint inhibitors side
effects and management, Immunotherapy 8, 799-807.
(10.) Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., and Minato, N. (2002)
Involvement of PD-L1 on tumor cells in the escape from host immune system and
tumor immunotherapy by PD-L1 blockade, Proc Natl Acad Sci U S A 99, 12293-12297.
(11.) Gunturi, A., and McDermott, D. F. (2015) Nivolumab for the treatment of
cancer, Expert Opin Investig Drugs 24, 253-260.
(12.) Guo, L., Zhang, H., and Chen, B. (2017) Nivolumab as Programmed Death1 (PD-1) Inhibitor for Targeted Immunotherapy in Tumor, J Cancer 8, 410-416.
(13.) Rendon, A., and Rayi, A. (2022) Nivolumab, StatPearls Publishing, Treasure
Island (FL).
(14.) Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao,
C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill,
A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur,
G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K.,
Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S., and
Wolchok, J. D. (2015) Combined Nivolumab and Ipilimumab or Monotherapy in
Untreated Melanoma, N Engl J Med 373, 23-34.
(15.) Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A., and George, A. J.
(2010) The safety and side effects of monoclonal antibodies, Nat Rev Drug Discov 9,
325-338.
(16.) Johnson, D. E. (2018) Biotherapeutics: Challenges and Opportunities for
Predictive Toxicology of Monoclonal Antibodies, Int J Mol Sci 19.
(17.) Lin, W. W., Lu, Y. C., Chuang, C. H., and Cheng, T. L. (2020) Ab locks for
improving the selectivity and safety of antibody drugs, J Biomed Sci 27, 76.
(18.) Donaldson, J. M., Kari, C., Fragoso, R. C., Rodeck, U., and Williams, J. C.
(2009) Design and development of masked therapeutic antibodies to limit off-target
effects: application to anti-EGFR antibodies, Cancer Biol Ther 8, 2147-2152.
(19.) Desnoyers, L. R., Vasiljeva, O., Richardson, J. H., Yang, A., Menendez, E. E.
M., Liang, T. W., Wong, C., Bessette, P. H., Kamath, K., Moore, S. J., Sagert, J. G.,
Hostetter, D. R., Han, F., Gee, J., Flandez, J., Markham, K., Nguyen, M., Krimm, M.,
Wong, K. R., Liu, S. C., Daugherty, P. S., West, J. W., and Lowman, H. B. (2013)
Tumor-Specific Activation of an EGFR-Targeting Probody Enhances Therapeutic
Index, Science Translational Medicine 5.
(20.) Onuoha, S. C., Ferrari, M., Sblattero, D., and Pitzalis, C. (2015) Rational
design of antirheumatic prodrugs specific for sites of inflammation, Arthritis
Rheumatol 67, 2661-2672.
(21.) Chen, I. J., Chuang, C. H., Hsieh, Y. C., Lu, Y. C., Lin, W. W., Huang, C. C.,
Cheng, T. C., Cheng, Y. A., Cheng, K. W., Wang, Y. T., Chen, F. M., Cheng, T. L., and
Tzou, S. C. (2017) Selective antibody activation through protease-activated proantibodies that mask binding sites with inhibitory domains, Sci Rep-Uk 7.
(22.) Trang, V. H., Zhang, X., Yumul, R. C., Zeng, W., Stone, I. J., Wo, S. W.,
Dominguez, M. M., Cochran, J. H., Simmons, J. K., Ryan, M. C., Lyon, R. P., Senter,
P. D., and Levengood, M. R. (2019) A coiled-coil masking domain for selective
activation of therapeutic antibodies, Nat Biotechnol 37, 761-765.
(23.) Lu, Y. C., Chuang, C. H., Chuang, K. H., Chen, I. J., Huang, B. C., Lee, W.
H., Wang, H. E., Li, J. J., Cheng, Y. A., Cheng, K. W., Wang, J. Y., Hsieh, Y. C., Lin, W.
W., and Cheng, T. L. (2019) Specific activation of pro-Infliximab enhances selectivity
and safety of rheumatoid arthritis therapy, PLoS Biol 17, e3000286.
(24.) Wong, W. K., Leem, J., and Deane, C. M. (2019) Comparative Analysis of
the CDR Loops of Antigen Receptors, Front Immunol 10, 2454.
(25.) Huang, B. C., Lu, Y. C., Liao, J. M., Liu, H. J., Hong, S. T., Hsieh, Y. C.,
Chuang, C. H., Chen, H. J., Liao, T. Y., Ho, K. W., Wang, Y. T., and Cheng, T. L. (2021)
Development of a structure-based computational simulation to optimize the blocking
efficacy of pro-antibodies, Chem Sci 12, 9759-9769.
(26.) Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C.,
Beglov, D., and Vajda, S. (2017) The ClusPro web server for protein–protein docking,
Nature protocols 12, 255-278.
(27.) Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall,
D. R., and Kozakov, D. (2017) New additions to the C lus P ro server motivated by
CAPRI, Proteins: Structure, Function, and Bioinformatics 85, 435-444.
(28.) Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., and Vajda, S. (2020)
Performance and its limits in rigid body protein-protein docking, Structure 28, 1071-
1081. e1073.
(29.) Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R.,
and Vajda, S. (2013) How good is automated protein docking?, Proteins: Structure,
Function, and Bioinformatics 81, 2159-2166.
(30.) Pierce, B. G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., and Weng, Z.
(2014) ZDOCK server: interactive docking prediction of protein–protein complexes
and symmetric multimers, Bioinformatics 30, 1771-1773
(此全文20260807後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *