帳號:guest(3.145.84.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳 欣
作者(外文):Chen, Hsin
論文名稱(中文):藥物誘導萊伯氏遺傳視神經病變視網膜神經節細胞分泌蛋白組對血管新生的調控
論文名稱(外文):Regulation of Angiogenesis by the Secretome from the Retinal Ganglion Cells with Drug-Induced Leber’s Hereditary Optic Neuropathy
指導教授(中文):焦傳金
邱士華
指導教授(外文):Chiao, Chuan-Chin
Chiou, Shih-Hwa
口試委員(中文):簡越
王夢蓮
口試委員(外文):Chien, Yueh
Wang, Mong-Lien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:110080560
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:66
中文關鍵詞:萊伯氏遺傳視神經病變視網膜神經節細胞血管新生魚藤酮細胞因子人類誘導型多能幹細胞
外文關鍵詞:Leber's Hereditary Optic NeuropathyRetinal ganglion cellsAngiogenesisRotenoneCytokinesHuman induced pluripotent stem cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
萊伯氏遺傳視神經病變 (LHON) 是首個被發現由粒線體 DNA (mtDNA)點突變引起的疾病,該疾病普遍於青少年時期發病,且好發於男性。該疾病會造成無痛的急性單眼或雙眼的視力下降並伴隨著中心視野缺損與變色能力下降。突變的粒線體DNA會導致呼吸鏈複合物1(Respiratory Complex 1)功能受損,造成活性氧 (ROS)過度上升,進而使得視神經內的視網膜神經節細胞 (RGC) 凋亡。檢查LHON患者的眼底血管呈現了水腫與曲折的外觀,這是LHON的特徵。在一些報導中指出少數LHON患者中會伴隨一些其他症狀,例如肌張力障礙、心臟功能障礙等。至今為止LHON 與血管之間的調控機制與關係尚未明朗。人類臍靜脈內皮細胞 (HUVEC) 是血管生成研究中常用的內皮細胞類型。我們利用魚藤酮 (Rotenone)建立了一個體外模型樣本來模擬人類誘導型多能幹細胞 (hIPSC)所生成的LHON的疾病模型,並且使用HUVEC建立了LHON患者眼外的血管體外模型。我們進行了血管新生實驗與細胞陣列因子實驗。與對照組相比,經過魚藤酮模擬的LHON疾病模型所生成的血管新生能力較對照組來的低。進一步進行血管新生陣列因子實驗 (Human Angiogenesis Array)發現一些與血管新生相關的細胞因子表達下降。總體而言我們的研究對於LHON疾病與血管間的關係有著不少的貢獻,這對於未來的治療策略中提出了另一種方向。
Leber's Hereditary Optic Neuropathy (LHON) is the first disease found to be caused by point mutations in mitochondrial DNA (mtDNA). The disease usually occurs in adolescence and predominantly affects males. Symptoms include painless acute loss of vision, central visual field loss, and decreased ability to distinguish colors. A mutation in mitochondrial DNA can impair the function of respiratory complex 1, leading to an increase in reactive oxygen species (ROS). This, in turn, results in apoptosis in retinal ganglion cells (RGCs) in the optic nerve. Examination of fundus blood vessels in LHON patients has shown dilation and tortuosity of optic nerve head blood vessels, which are characteristic features of LHON. Additionally, a small number of LHON patients have been reported to experience other symptoms such as dystonia or cardiac dysfunction. The relationship between LHON and blood vessels remains unclear. Human umbilical vein endothelial cells (HUVECs) are commonly used in angiogenesis studies as a representative endothelial cell type. To simulate the LHON disease model using human induced pluripotent stem cells (IPSCs), we employed rotenone and HUVECs to establish an in vitro model of blood vessels outside the eye for LHON patients. We conducted a tube formation assay and utilized a human angiogenesis array. Compared to the control group, the rotenone-induced LHON disease model exhibited a lower ability to induce angiogenesis. Further studies using the human angiogenesis array revealed a decrease in the expression of certain cytokines associated with angiogenesis. In conclusion, our research has made significant contributions to understanding the correlation between LHON disease and blood vessels, suggesting a new direction for future treatment strategies.
Abstract I
中文摘要 II
Abbreviation III
誌謝 IV
Table of Contents VI
Chapter 1: Introductio 1
1.1 The blood supply in eyes 2
1.2 Leber’s hereditary optic neuropathy 2
1.3 Vascular features in patients with LHON 3
1.4 The extraocular symptoms in LHON patients 3
1.5 Mitochondrial Apoptosis 4
1.6 Modeling LHON using IPSC-derived retinal organoids 4
1.7 Modeling LHON by Rotenone-Induced Mitochondrial dysfunction 5
1.8 Human umbilical vein endothelial cells 6
1.9 Motivation and Specific Aims 6
Chapter 2: Materials and Methods 8
2.1 Organize the method section by categories generation of hIPSC 9
2.2 Alkaline phosphatase staining 9
2.3 Immunofluorescence staining 10
2.4 Differentiation of IPSCs into RGCs 11
2.5 Reverse transcription polymerase chain reaction (RT-PCR) 12
2.6 Maintenance of Human umbilical vein endothelial cell (HUVEC) cell line 12
2.7 Cell Viability/Cytotoxicity Assay 12
2.8 Mitochondrial superoxide assay 13
2.9 Mitochondrial membrane potential assay 13
2.10 Annexin V staining 13
2.11 Conditioned medium preparation 14
2.12 Tube Formation Assays 14
2.13 Human Angiogenesis Array and Human Cytokine Array 15
2.14 Statistics Analysis 15
Chapter 3: Results 16
3.1 Generation of the PBMC-Derived iPSC 17
3.2 Differentiation of iPSC into RGCs 18
3.3 Rotenone induces RGC degeneration as the LHON patient's disease model. 19
3.4 Cytotoxicity effect of Rotenone on HUVECs 20
3.5 Assessment of the angiogenic capacity of HUVECs under different conditioned mediums. 21
3.6 Analysis of the Secretomes from Normal or Rotenone-treated RGCs 23
Chapter 4: Discussion 25
Chapter 5: Figures 31
Chapter 6: References 59

JW.Kiel. (2010.). The Ocular Circulation. San Rafael (CA): Morgan & Claypool Life Sciences.
Kirches, E. (2011). LHON: Mitochondrial Mutations and More. Current Genomics, 12(1), 44-54.
Hüttemann, M., Lee, I., Pecinova, A., Pecina, P., Przyklenk, K., & Doan, J. W. (2008). Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Journal of bioenergetics and biomembranes, 40, 445-456.
Fikry, H., Saleh, L. A., & Gawad, S. A. (2022). Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model. CNS Neuroscience & Therapeutics, 28(5), 732-748.
Ji, L., & Tang, B. (2019). Differentiation of retinal ganglion cells from induced pluripotent stem cells: A review. International Journal of Ophthalmology, 12(1), 152-160.
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 126(4), 663-676.
Deng, F., Chen, M., Liu, Y., Hu, H., Xiong, Y., Xu, C., ... & Ge, J. (2016). Stage-specific differentiation of IPSCs toward retinal ganglion cell lineage. Molecular vision, 22, 536.
Peron, C., Maresca, A., Cavaliere, A., Iannielli, A., Broccoli, V., Carelli, V., ... & Tiranti, V. (2021). Exploiting hIPSCs in Leber's hereditary optic neuropathy (LHON): present achievements and future perspectives. Frontiers in Neurology, 12, 648916.
Kirkman, M. A., Yu-Wai-Man, P., Korsten, A., Leonhardt, M., Dimitriadis, K., De Coo, I. F., ... & Chinnery, P. F. (2009). Gene–environment interactions in Leber hereditary optic neuropathy. Brain, 132(9), 2317-2326.
Fikry, H., Saleh, L. A., & Gawad, S. A. (2022). Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model. CNS Neuroscience & Therapeutics, 28(5), 732-748.
Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., & Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Journal of Biological Chemistry, 278(10), 8516-8525.
Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of Cell Biology, 107(4), 1589-1598.
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676.
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., ... & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947-956.
Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., ... & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917-1920.
Schopperle, W. M., & DeWolf, W. C. (2007). The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells, 25(3), 723-730
Zhang, G., Gurtu, V., Kain, S. R., & Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques, 23(3), 525-531.
Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., & Gueven, N. (2012). Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy.
Kim, U. S., Mahroo, O. A., Mollon, J. D., & Yu-Wai-Man, P. (2021). Retinal ganglion cells—diversity of cell types and clinical relevance. Frontiers in Neurology, 12, 661938.
Crawford, T. Q., & Roelink, H. (2007). The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell‐derived embryoid bodies independently of sonic hedgehog signaling. Developmental Dynamics: an Official Publication of the American Association of Anatomists, 236(3), 886-892.
Riazifar, H., Jia, Y., Chen, J., Lynch, G., & Huang, T. (2014). Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Translational Medicine, 3(4), 424-432.
Aoyama, Y., Inagaki, S., Aoshima, K., Iwata, Y., Nakamura, S., Hara, H., & Shimazawa, M. (2021). Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. Journal of Pharmacological Sciences, 147(2), 200-207.
Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., & Gueven, N. (2012). Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy.
Stanford, K. R., & Taylor-Clark, T. E. (2018). Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PloS one, 13(5), e0197106.
Chen, D. Y., Wei, H. J., Lin, K. J., Huang, C. C., Wang, C. C., Wu, C. T., ... & Sung, H. W. (2013). Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials, 34(8), 1995-2004.
Stanford, K. R., & Taylor-Clark, T. E. (2018). Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PloS one, 13(5), e0197106.
Brauchle, E., Thude, S., Brucker, S. Y., & Schenke-Layland, K. (2014). Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Scientific reports, 4(1), 4698.
Zhang, Y., Cui, S., Cao, S., Yang, L., Qin, G., & Zhang, E. (2022). To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surface and Coatings Technology, 433, 128116.
DeCicco-Skinner, K. L., Henry, G. H., Cataisson, C., Tabib, T., Gwilliam, J. C., Watson, N. J., Bullwinkle, E. M., Falkenburg, L., Morin, A., & Wiest, J. S. (2014). Endothelial Cell Tube Formation Assay for the In Vitro Study of Angiogenesis. Journal of Visualized Experiments : JoVE, (91).
Deryugina, E. I., & Quigley, J. P. (2015). Tumor angiogenesis: MMP-mediated induction of intravasation-and metastasis-sustaining neovasculature. Matrix Biology, 44, 94-112.
Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J. C., Arana-Argáez, V., Lara-Riegos, J., ... & Alvarez-Sánchez, M. E. (2019). Role of matrix metalloproteinases in angiogenesis and cancer. Frontiers in Oncology, 9, 1370.
Hollborn, M., Stathopoulos, C., Steffen, A., Wiedemann, P., Kohen, L., & Bringmann, A. (2007). Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Investigative Ophthalmology & Visual Science, 48(9), 4360-4367.
Levin, L. A. (2007). Mechanisms of retinal ganglion specific-cell death in Leber hereditary optic neuropathy. Transactions of the American Ophthalmological Society, 105, 379.
Majander, A., Robson, A. G., João, C., Holder, G. E., Chinnery, P. F., Moore, A. T., ... & Yu-Wai-Man, P. (2017). The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion, 36, 138-149.
Koilkonda, R. D., & Guy, J. (2011). Leber's hereditary optic neuropathy-gene therapy: from benchtop to bedside. Journal of Ophthalmology, 2011.
Yu-Wai-Man, P., & Chinnery, P. F. (2011). Leber hereditary optic neuropathy–Therapeutic challenges and early promise. Taiwan Journal of Ophthalmology, 1(1), 12-15.
Yu-Wai-Man, P., Griffiths, P. G., & Chinnery, P. F. (2011). Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Progress in Retinal and Eye Research, 30(2), 81-114.
Piotrowska, A., Korwin, M., Bartnik, E., & Tońska, K. (2015). Leber hereditary optic neuropathy—historical report in comparison with the current knowledge. Gene, 555(1), 41-49.
Yu-Wai-Man, P., Griffiths, P. G., Hudson, G., & Chinnery, P. F. (2009). Inherited mitochondrial optic neuropathies. Journal of Medical Genetics, 46(3), 145-158.
Newman, N. J. (2011). Treatment of Leber hereditary optic neuropathy. Brain, 134(9), 2447-2450.
Asanad, S., Meer, E., Tian, J. J., Fantini, M., Nassisi, M., & Sadun, A. A. (2019). Leber's hereditary optic neuropathy: Severe vascular pathology in a severe primary mutation. Intractable & Rare Diseases Research, 8(1), 52-55.

Qu, K., Yan, F., Qin, X., Zhang, K., He, W., Dong, M., & Wu, G. (2022). Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Frontiers in Physiology,
Kirkman, D. L., Robinson, A. T., Rossman, M. J., Seals, D. R., & Edwards, D. G. (2021). Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. American Journal of Physiology-Heart and Circulatory Physiology, 320(5), H2080-H2100.
Veréb, Z., Lumi, X., Andjelic, S., Globocnik-Petrovic, M., Urbancic, M., Hawlina, M., ... & Petrovski, G. (2013). Functional and molecular characterization of ex vivo cultured epiretinal membrane cells from human proliferative diabetic retinopathy. BioMed research international, 2013.
Zhou, H. W., & Odel, J. G. (2022). Arterial sheathing in Leber hereditary optic neuropathy. American Journal of Ophthalmology Case Reports, 26, 101431.
Jones, R. E., Lee, J., & Ali, M. M. (2018). Renal artery aneurysm associated with Leber hereditary optic neuropathy. Journal of Vascular Surgery Cases and Innovative Techniques, 4(1), 5-7.
Vestergaard, N., Rosenberg, T., Torp-Pedersen, C., Vorum, H., Andersen, C. U., & Aasbjerg, K. (2017). Increased mortality and comorbidity associated with Leber's hereditary optic neuropathy: a nationwide cohort study. Investigative Ophthalmology & Visual Science, 58(11), 4586-4592.
Finsterer, J., & Zarrouk-Mahjoub, S. (2016). Leber’s hereditary optic neuropathy is multiorgan not mono-organ. Clinical Ophthalmology, 2187-2190.
Yu-Wai-Man, P., Griffiths, P. G., & Chinnery, P. F. (2011). Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Progress in Retinal and Eye Research, 30(2), 81-114.
Devi, S. M., Nair, A. P., Mahalaxmi, I., & Balachandar, V. (2021). Mitochondrial function and epigenetic outlook in Leber's Hereditary Optic Neuropathy (LHON). Neurology Perspectives, 1(4), 220-232.
Heitz, F. D., Erb, M., Anklin, C., Robay, D., Pernet, V., & Gueven, N. (2012). Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy.
Corda, S., Laplace, C., Vicaut, E., & Duranteau, J. (2001). Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-α is mediated by ceramide. American Journal of Respiratory Cell and Molecular Biology, 24(6), 762-768.
Liu, S., Chen, S., Ren, J., Li, B., & Qin, B. (2018). Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides, 67, 63-70.
Luo, Z., Yao, J., Wang, Z., & Xu, J. (2023). Mitochondria in endothelial cells angiogenesis and function: Current understanding and future perspectives. Journal of Translational Medicine, 21.
Takayama, K., Ito, Y., Kaneko, H., Kataoka, K., Ra, E., & Terasaki, H. (2017). Optical coherence tomography angiography in Leber hereditary optic neuropathy. Acta Ophthalmologica,
Merchan, J. R., Chan, B., Kale, S., Schnipper, L. E., & Sukhatme, V. P. (2003). In vitro and in vivo induction of antiangiogenic activity by plasminogen activators and captopril. Journal of the National Cancer Institute, 95(5), 388-3
Marneros, A. G., Keene, D. R., Hansen, U., Fukai, N., Moulton, K., Goletz, P. L., Moiseyev, G., Pawlyk, B. S., Halfter, W., Dong, S., Shibata, M., Li, T., Crouch, R. K., Bruckner, P., & Olsen, B. R. (2004). Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. The EMBO Journal, 23(1), 89-99.
Lee S, Chen T, Barber C, Jordan M, Murdock J, Desai S, Ferrara N, Nagy A, Roos K and Iruela-Arispe M (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007 August 24; 130(4): 691–703.
Breuss, J. M., & Uhrin, P. (2012). VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adhesion & Migration, 6(6), 535-540.
Hollborn, M., Stathopoulos, C., Steffen, A., Wiedemann, P., Kohen, L., & Bringmann, A. (2007). Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Investigative Ophthalmology & Visual Science, 48(9), 4360-4367.
Yurina, N. V., Ageeva, T. A., Goryachkin, A. M., Varaksin, N. A., Ryabicheva, T. G., Ostanin, A. A., Chernykh, E. R., Romashchenko, A. V., Proskurina, A. S., Bogachev, S., & Purtov, A. V. (2021). Effects of Recombinant Angiogenin on Collagen Fiber Formation and Angiogenesis in the Dermis of Wistar Rats. Clinical, Cosmetic and Investigational Dermatology, 14, 187-196.
Andrée, B., Ichanti, H., Kalies, S., Heisterkamp, A., Strauß, S., Vogt, P., Haverich, A., & Hilfiker, A. (2019). Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Scientific Reports, 9(1), 1-11.
(此全文20280828後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *