帳號:guest(3.135.215.96)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭呈善
作者(外文):Kuo, Cheng-Shan
論文名稱(中文):了解乙醯膽鹼的神經傳遞變化如何影響軸突微管蛋白乙醯基化與軸突運輸
論文名稱(外文):Understanding how changes in ACh neurotransmission affect axonal tubulin acetylation and axonal transport
指導教授(中文):王歐力
指導教授(外文):Wagner, Oliver
口試委員(中文):黃兆祺
林玉俊
口試委員(外文):Hwang, Eric
Lin, Yu-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:110080541
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:69
中文關鍵詞:軸突運輸神經傳遞後轉譯修飾驅動蛋白線蟲乙醯基化
外文關鍵詞:axonal transportneurotransmissionposttranslational modificationkinesinC. elegansacetylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軸突運輸與神經學疾病的關聯已受到仔細地研究。UNC-104/KIF1A是神經中突觸囊泡的主要運輸者,此分子馬達的缺陷與夏柯-馬利-杜斯氏症與遺傳性痙攣性下身麻痺(HSP)有關。在本實驗室先前發表的碩士論文(Zaira Wang, 王孟婕)中,兩種突觸缺陷株unc-17(e245) (乙醯膽鹼運輸蛋白)與eat-4(ky5) (麩胺酸運輸蛋白)被發現分別在微管乙醯基化程度上升與持平情況下降低UNC-104運動性。本研究因此試圖連結這三項因素(突觸傳遞、微管蛋白後轉譯修飾及軸突運輸)。我們首先揭露以藥物抑制乙醯膽鹼突觸傳遞與過表達乙醯轉移酶MEC-17降低了UNC-104移動速度與總移動距離。乙醯膽鹼突觸傳遞抑制劑levamisole與MEC-17過表達皆減少了分子馬達的方向轉換。我們不但再次確認了在unc-17(e245)與eat-4(ky5)中降低的UNC-104運動性,也透過增加的分子馬達持續性移動顯示了可能的微管蛋白後轉譯修飾變化。有趣的是,這項特徵亦能在levamisole處理與MEC-17過表達中發現。我們亦能單純藉由基因敲落MEC-17來拯救unc-17(e245)中觀察到的分子馬達移動性改變,然而過表現去乙醯酶HDA-6無法拯救該缺陷。我們展示了相較於乙醯轉移酶,基因敲落去乙醯酶在eat-4(ky5)中有更強的負面影響,且沒有觀察到任何拯救效果。此外在雙分子螢光互補試驗中,我們揭露了UNC-17、UNC-104和MEC-17在原位的交互作用。有趣的是,基因敲落MEC-17後,我們觀察到增強的UNC-17/UNC-104雙分子螢光互補對訊號。我們推測透過這些蛋白的直接連結,乙醯膽鹼突觸傳遞得以調節微管乙醯基化,而乙醯基化程度的改變進一步介導UNC-104軸突運輸。
The relation between axonal transport and neurological diseases has been thoroughly studied. UNC-104/KIF1A is the major transporter of synaptic vesicles in neurons and defects in this motor has been related to Charcot-Marie Tooth diseases as well as Hereditary spastic paraplegia (HSP). In a previous Master thesis from our lab (Zaira Wang, 王孟婕), two synaptic defect strain unc-17(e245) (ACh transporter) and eat-4(ky5) (L-glutamate transporter) have been identified to reduce UNC-104 motility with microtubule acetylation increased and unaltered, respectively. The study now attempts to tie these three factors together (synaptic transmission, posttranslational modification of tubulin, and axonal transport). We first showed reduced UNC-104 velocity and total run length with drugs specifically inhibiting ACh neurotransmission and overexpressing acetyltransferase MEC-17. ACh neurotransmission inhibitor levamisole and MEC-17 overexpression both reduced directional changes of motor. We not only confirmed the diminished UNC-104 motility in unc-17(e245) and eat-4(ky5) but also showed possible changes in tubulin PTMs with increased motor persistent moving. Interestingly, this characteristic was observed in levamisole treatment and MEC-17 overexpression as well. We were also able to rescue observed changes in motor movements in unc-17(e245) by simply knockdown of MEC-17; however, overexpressing deacetylase HDA-6 could not rescue the defect. We showed that knockdown of deacetylase had a stronger negative effect in eat-4(ky5) as compared to acetyltransferase, and no rescue effect was observed. Furthermore, in BiFC assays, in situ interaction between UNC-17, UNC-104, and MEC-17 were revealed. Interestingly, for UNC-17/UNC-104 BiFC pair, we observed increased signal after mec-17 knockdown. We speculate that through direct link between three proteins, ACh neurotransmission could regulate tubulin acetylation, and the change in acetylation level then mediate UNC-104 axonal transport.
Acknowledgments...i
摘要...ii
Abstract...iii
1 Introduction...1
1.1 Axonal transport and synaptic transmission...1
1.1.1 Overview of axonal transport and synaptic transmission..1
1.1.2 Acetylcholine neurotransmission...2
1.1.3 Glutamate neurotransmission...3
1.2 Posttranslational modifications (PTMs) of tubulin...3
1.2.1 Overview of PTMs on tubulin...3
1.2.2 Acetylation of tubulin...4
1.3 Synaptic defect and tubulin acetylation – previous work...5
1.4 Specific aim of the study...6
2 Materials and Methods...8
2.1 Worm maintenance and reagents...8
2.1.1 Nematode growth media (NGM) agar plates...8
2.1.2 M9 Buffer...8
2.1.3 LB medium...8
2.1.4 Genomic DNA isolation buffer...8
2.1.5 NGM plates to induce ACh transmission defects...9
2.2 Plasmid construct...9
2.3 C. elegans strains...10
2.4 Crossing...11
2.5 Microinjection...12
2.6 RNAi by feeding...13
2.7 Paralyzing C. elegans by drugs...13
2.8 Motility analysis...14
2.9 Colocalization analysis...14
2.10 Fluorescence intensity quantification...15
2.11 BiFC assays...15
2.12 Statistical analysis...15
3 Results...16
3.1 Generation of new transgenic lines expressing UNC-104::mRFP..16
3.2 Effects of neurotransmission disruption and MEC-17/UNC-17
overexpression on UNC-104 motility...16
3.2.1 Levamisole and aldicarb disturb the motility of UNC-104 in ALM neurons...17
3.2.2 Overexpressing MEC-17 in wild type worms disturbs the motility of UNC-104 in ALM neurons...18
3.2.3 Synaptic defect strains reveal reduced anterograde and retrograde velocity of UNC-104...19
3.3 Effects of acetyltransferase and deacetylase expression on UNC-104 motility in worms with an ACh transporter mutation (unc-17)...20
3.3.1 Mec-17 knockdown significantly rescues reduced microtubule
acetylation in unc-17(e245)...21
3.3.2 Knocking down two different deacetylases do not rescue observed unc-17(e245) effects on motor motility...22
3.4 Changes of acetyltransferase and deacetylase expressions have only a minor effect on UNC-104 motility in eat-4(ky5) mutants...23
3.5 Colocalization between UNC-104 and UNC-17 significantly changes
after knocking down genes affecting tubulin acetylation...24
3.6 BiFC assays reveal in situ interactions between UNC-17, UNC-104 and MEC-17...24
4 Discussion...26
4.1 Disrupted ACh synaptic transmission leads to reduced axonal transport...26
4.2 Microtubule acetylation affects kinesin-3 UNC-104/KIF1A motility...28
4.3 ACh neurotransmission may mediate microtubule acetylation level to regulate UNC-104/KIF1A based transport...32
4.4 Future outlook...34
5 References...36
6 Figures...43
Appendix...60
Akhmanova, A., and J.A. Hammer, 3rd. 2010. Linking molecular motors to membrane cargo. Curr Opin Cell Biol. 22:479-487.
Alfonso, A., K. Grundahl, J.S. Duerr, H.P. Han, and J.B. Rand. 1993. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science. 261:617-619.
Audebert, S., E. Desbruyeres, C. Gruszczynski, A. Koulakoff, F. Gros, P. Denoulet, and B. Edde. 1993. Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. Mol Biol Cell. 4:615-626.
Bak, L.K., A. Schousboe, and H.S. Waagepetersen. 2006. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 98:641-653.
Balabanian, L., C.L. Berger, and A.G. Hendricks. 2017. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility. Biophys J. 113:1551-1560.
Bhan, P., M. Muthaiyan Shanmugam, D. Wang, O. Bayansan, C.W. Chen, and O.I. Wagner. 2020. Characterization of TAG-63 and its role on axonal transport in C. elegans. Traffic. 21:231-249.
Bhuwania, R., A. Castro-Castro, and S. Linder. 2014. Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol. 93:424-437.
Boucher, D., J.C. Larcher, F. Gros, and P. Denoulet. 1994. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry. 33:12471-12477.
Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics. 77:71-94.
Cai, D., D.P. McEwen, J.R. Martens, E. Meyhofer, and K.J. Verhey. 2009. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7:e1000216.
Chen, C.W., Y.F. Peng, Y.C. Yen, P. Bhan, M. Muthaiyan Shanmugam, D.R. Klopfenstein, and O.I. Wagner. 2019. Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans. J Neurosci Res. 97:185-201.
Chiba, K., T. Kita, Y. Anazawa, and S. Niwa. 2023. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. J Cell Sci. 136.
Cueva, J.G., J. Hsin, K.C. Huang, and M.B. Goodman. 2012. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol. 22:1066-1074.
d'Ydewalle, C., J. Krishnan, D.M. Chiheb, P. Van Damme, J. Irobi, A.P. Kozikowski, P. Vanden Berghe, V. Timmerman, W. Robberecht, and L. Van Den Bosch. 2011. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 17:968-974.
Dompierre, J.P., J.D. Godin, B.C. Charrin, F.P. Cordelieres, S.J. King, S. Humbert, and F. Saudou. 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 27:3571-3583.
Eshun-Wilson, L., R. Zhang, D. Portran, M.V. Nachury, D.B. Toso, T. Lohr, M. Vendruscolo, M. Bonomi, J.S. Fraser, and E. Nogales. 2019. Effects of alpha-tubulin acetylation on microtubule structure and stability. Proc Natl Acad Sci U S A. 116:10366-10371.
Even, A., G. Morelli, L. Broix, C. Scaramuzzino, S. Turchetto, I. Gladwyn-Ng, R. Le Bail, M. Shilian, S. Freeman, M.M. Magiera, A.S. Jijumon, N. Krusy, B. Malgrange, B. Brone, P. Dietrich, I. Dragatsis, C. Janke, F. Saudou, M. Weil, and L. Nguyen. 2019. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 5:eaax2705.
Fan, J.Y., Z.Q. Cui, H.P. Wei, Z.P. Zhang, Y.F. Zhou, Y.P. Wang, and X.E. Zhang. 2008. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem Biophys Res Commun. 367:47-53.
Fan, R., and K.O. Lai. 2022. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J. 289:2128-2144.
Ferreira-Vieira, T.H., I.M. Guimaraes, F.R. Silva, and F.M. Ribeiro. 2016. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 14:101-115.
Fu, M.M., and E.L. Holzbaur. 2013. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol. 202:495-508.
Genova, M., L. Grycova, V. Puttrich, M.M. Magiera, Z. Lansky, C. Janke, and M. Braun. 2023. Tubulin polyglutamylation differentially regulates microtubule-interacting proteins. EMBO J. 42:e112101.
Godena, V.K., N. Brookes-Hocking, A. Moller, G. Shaw, M. Oswald, R.M. Sancho, C.C. Miller, A.J. Whitworth, and K.J. De Vos. 2014. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun. 5:5245.
Guardia, C.M., G.G. Farias, R. Jia, J. Pu, and J.S. Bonifacino. 2016. BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks. Cell Rep. 17:1950-1961.
Guedes-Dias, P., J.J. Nirschl, N. Abreu, M.K. Tokito, C. Janke, M.M. Magiera, and E.L.F. Holzbaur. 2019. Kinesin-3 Responds to Local Microtubule Dynamics to Target Synaptic Cargo Delivery to the Presynapse. Curr Biol. 29:268-282 e268.
Guillaud, L., S.E. El-Agamy, M. Otsuki, and M. Terenzio. 2020. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Frontiers in molecular neuroscience. 13:556175.
Hall, D.H., and E.M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 65:837-847.
Hammond, J.W., D. Cai, T.L. Blasius, Z. Li, Y. Jiang, G.T. Jih, E. Meyhofer, and K.J. Verhey. 2009. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol. 7:e72.
Hancock, W.O. 2014. Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol. 15:615-628.
Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 68:610-638.
Hoekstra, R., A. Visser, L.J. Wiley, A.S. Weiss, N.C. Sangster, and M.H. Roos. 1997. Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Mol Biochem Parasitol. 84:179-187.
Hoerndli, F.J., D.A. Maxfield, P.J. Brockie, J.E. Mellem, E. Jensen, R. Wang, D.M. Madsen, and A.V. Maricq. 2013. Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron. 80:1421-1437.
Hsu, C.C., J.D. Moncaleano, and O.I. Wagner. 2011. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons. Neuroscience. 176:39-52.
Hummel, J.J.A., and C.C. Hoogenraad. 2021. Specific KIF1A-adaptor interactions control selective cargo recognition. J Cell Biol. 220.
Huo, L., Y. Yue, J. Ren, J. Yu, J. Liu, Y. Yu, F. Ye, T. Xu, M. Zhang, and W. Feng. 2012. The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A. Structure. 20:1550-1561.
Ikegami, K., R.L. Heier, M. Taruishi, H. Takagi, M. Mukai, S. Shimma, S. Taira, K. Hatanaka, N. Morone, I. Yao, P.K. Campbell, S. Yuasa, C. Janke, G.R. Macgregor, and M. Setou. 2007. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A. 104:3213-3218.
Janke, C., and M.M. Magiera. 2020. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 21:307-326.
Kamath, R.S., M. Martinez-Campos, P. Zipperlen, A.G. Fraser, and J. Ahringer. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2:RESEARCH0002.
Kawaguchi, Y., J.J. Kovacs, A. McLaurin, J.M. Vance, A. Ito, and T.P. Yao. 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 115:727-738.
Klopfenstein, D.R., and R.D. Vale. 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol Biol Cell. 15:3729-3739.
Kreis, T.E. 1987. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6:2597-2606.
Kumar, J., B.C. Choudhary, R. Metpally, Q. Zheng, M.L. Nonet, S. Ramanathan, D.R. Klopfenstein, and S.P. Koushika. 2010. The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet. 6:e1001200.
Li, L., and X.J. Yang. 2015. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci. 72:4237-4255.
Li, Q., A. Lau, T.J. Morris, L. Guo, C.B. Fordyce, and E.F. Stanley. 2004. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci. 24:4070-4081.
Li, W., B. Zhang, J. Tang, Q. Cao, Y. Wu, C. Wu, J. Guo, E.A. Ling, and F. Liang. 2007. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci. 27:2606-2616.
Ligon, L.A., M. Tokito, J.M. Finklestein, F.E. Grossman, and E.L. Holzbaur. 2004. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J Biol Chem. 279:19201-19208.
Maas, C., D. Belgardt, H.K. Lee, F.F. Heisler, C. Lappe-Siefke, M.M. Magiera, J. van Dijk, T.J. Hausrat, C. Janke, and M. Kneussel. 2009. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A. 106:8731-8736.
Magiera, M.M., S. Bodakuntla, J. Ziak, S. Lacomme, P. Marques Sousa, S. Leboucher, T.J. Hausrat, C. Bosc, A. Andrieux, M. Kneussel, M. Landry, A. Calas, M. Balastik, and C. Janke. 2018. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37.
Mano, I., S. Straud, and M. Driscoll. 2007. Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse. J Biol Chem. 282:34412-34419.
Martin, R.J., A.P. Robertson, S.K. Buxton, R.N. Beech, C.L. Charvet, and C. Neveu. 2012. Levamisole receptors: a second awakening. Trends Parasitol. 28:289-296.
Martinez-Hernandez, J., J. Parato, A. Sharma, J.M. Soleilhac, X. Qu, E. Tein, A. Sproul, A. Andrieux, Y. Goldberg, M.J. Moutin, F. Bartolini, and L. Peris. 2022. Crosstalk between acetylation and the tyrosination/detyrosination cycle of alpha-tubulin in Alzheimer's disease. Front Cell Dev Biol. 10:926914.
McCloy, R.A., S. Rogers, C.E. Caldon, T. Lorca, A. Castro, and A. Burgess. 2014. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 13:1400-1412.
Mello, C.C., J.M. Kramer, D. Stinchcomb, and V. Ambros. 1991. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:3959-3970.
Millecamps, S., and J.P. Julien. 2013. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 14:161-176.
Miller, K.G., A. Alfonso, M. Nguyen, J.A. Crowell, C.D. Johnson, and J.B. Rand. 1996. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A. 93:12593-12598.
Mondal, S., S. Ahlawat, K. Rau, V. Venkataraman, and S.P. Koushika. 2011. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic. 12:372-385.
Mulcahy, B., L. Holden-Dye, and V. O'Connor. 2013. Pharmacological assays reveal age-related changes in synaptic transmission at the Caenorhabditis elegans neuromuscular junction that are modified by reduced insulin signalling. J Exp Biol. 216:492-501.
Muller, M.J., S. Klumpp, and R. Lipowsky. 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A. 105:4609-4614.
Muniesh, M.S., S.N. Barmaver, H.Y. Huang, O. Bayansan, and O.I. Wagner. 2020. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell. 31:2932-2947.
Muthaiyan Shanmugam, M., P. Bhan, H.Y. Huang, J. Hsieh, T.E. Hua, G.H. Wu, H. Punjabi, V.D. Lee Aplicano, C.W. Chen, and O.I. Wagner. 2018. Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons. Mol Cell Biol. 38.
Nagy, P.M., and I. Aubert. 2012. Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience. 218:1-11.
Niwa, S., D.M. Lipton, M. Morikawa, C. Zhao, N. Hirokawa, H. Lu, and K. Shen. 2016. Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Rep. 16:2129-2141.
North, B.J., B.L. Marshall, M.T. Borra, J.M. Denu, and E. Verdin. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 11:437-444.
Popoli, M., Z. Yan, B.S. McEwen, and G. Sanacora. 2011. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 13:22-37.
Portran, D., L. Schaedel, Z. Xu, M. Thery, and M.V. Nachury. 2017. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol. 19:391-398.
Reed, N.A., D. Cai, T.L. Blasius, G.T. Jih, E. Meyhofer, J. Gaertig, and K.J. Verhey. 2006. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 16:2166-2172.
Sandoval, G.M., J.S. Duerr, J. Hodgkin, J.B. Rand, and G. Ruvkun. 2006. A genetic interaction between the vesicular acetylcholine transporter VAChT/UNC-17 and synaptobrevin/SNB-1 in C. elegans. Nat Neurosci. 9:599-601.
Shin, S.C., S.K. Im, E.H. Jang, K.S. Jin, E.M. Hur, and E.E. Kim. 2019. Structural and Molecular Basis for Katanin-Mediated Severing of Glutamylated Microtubules. Cell Rep. 26:1357-1367 e1355.
Shyu, Y.J., S.M. Hiatt, H.M. Duren, R.E. Ellis, T.K. Kerppola, and C.D. Hu. 2008. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc. 3:588-596.
Siddiqui, N., and A. Straube. 2017. Intracellular Cargo Transport by Kinesin-3 Motors. Biochemistry (Mosc). 82:803-815.
Solinger, J.A., R. Paolinelli, H. Kloss, F.B. Scorza, S. Marchesi, U. Sauder, D. Mitsushima, F. Capuani, S.R. Sturzenbaum, and G. Cassata. 2010. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation. PLoS Genet. 6:e1000820.
Song, H., G. Ming, E. Fon, E. Bellocchio, R.H. Edwards, and M. Poo. 1997. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron. 18:815-826.
Sudhof, T.C. 2012. The presynaptic active zone. Neuron. 75:11-25.
Szyk, A., A.M. Deaconescu, J. Spector, B. Goodman, M.L. Valenstein, N.E. Ziolkowska, V. Kormendi, N. Grigorieff, and A. Roll-Mecak. 2014. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell. 157:1405-1415.
Teoh, J.S., A. Vasudevan, W. Wang, S. Dhananjay, G. Chandhok, R. Pocock, S.P. Koushika, and B. Neumann. 2022. Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/alphaTAT1 and ATAT-2. Sci Rep. 12:14003.
Tien, N.W., G.H. Wu, C.C. Hsu, C.Y. Chang, and O.I. Wagner. 2011. Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis. 43:495-506.
Valenstein, M.L., and A. Roll-Mecak. 2016. Graded Control of Microtubule Severing by Tubulin Glutamylation. Cell. 164:911-921.
Wagner, O.I., A. Esposito, B. Kohler, C.W. Chen, C.P. Shen, G.H. Wu, E. Butkevich, S. Mandalapu, D. Wenzel, F.S. Wouters, and D.R. Klopfenstein. 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A. 106:19605-19610.
Wu, G.H., M. Muthaiyan Shanmugam, P. Bhan, Y.H. Huang, and O.I. Wagner. 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic. 17:891-907.
Xu, F., H. Takahashi, Y. Tanaka, S. Ichinose, S. Niwa, M.P. Wicklund, and N. Hirokawa. 2018. KIF1Bbeta mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. J Cell Biol. 217:3480-3496.
Yagensky, O., T. Kalantary Dehaghi, and J.J. Chua. 2016. The Roles of Microtubule-Based Transport at Presynaptic Nerve Terminals. Frontiers in synaptic neuroscience. 8:3.
Yamaguchi, K., M. Tanaka, A. Mizoguchi, Y. Hirata, H. Ishizaki, K. Kaneko, J. Miyoshi, and Y. Takai. 2002. A GDP/GTP exchange protein for the Rab3 small G protein family up-regulates a postdocking step of synaptic exocytosis in central synapses. Proc Natl Acad Sci U S A. 99:14536-14541.
Yang, Y., X. Chen, Z. Feng, X. Cai, X. Zhu, M. Cao, L. Yang, Y. Chen, Y. Wang, and H. Feng. 2022. MEC17-induced alpha-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. J Neurochem. 160:51-63.
Yi, J.Y., K.M. Ori-McKenney, R.J. McKenney, M. Vershinin, S.P. Gross, and R.B. Vallee. 2011. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol. 195:193-201.
Yonekawa, Y., A. Harada, Y. Okada, T. Funakoshi, Y. Kanai, Y. Takei, S. Terada, T. Noda, and N. Hirokawa. 1998. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol. 141:431-441.
Zhu, H., J.S. Duerr, H. Varoqui, J.R. McManus, J.B. Rand, and J.D. Erickson. 2001. Analysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation. J Biol Chem. 276:41580-41587.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *