|
Hao, T., et al., An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep, 2019. 9(1): p. 12070. 2. Thun, M.J., et al., The global burden of cancer: priorities for prevention. Carcinogenesis, 2010. 31(1): p. 100-10. 3. (IARC), I.A.f.R.o.C. Estimated number of new cases from 2020 to 2050. 2024 21 April 2024]; Available from: https://gco.iarc.fr/tomorrow/en. 4. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249. 5. Block, K.I., et al., Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol, 2015. 35 Suppl(Suppl): p. S276-S304. 6. Hoteit, M., et al., Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncol Lett, 2021. 22(3): p. 655. 7. Zhang, L., et al., Peptide-based materials for cancer immunotherapy. Theranostics, 2019. 9(25): p. 7807-7825. 8. Wang, Y., et al., Clinical prognostic significance of xeroderma pigmentosum group C and IFN‑gamma in non‑small cell lung cancer. Oncol Lett, 2024. 27(6): p. 259. 9. Hoke, A.T.K., et al., Targeting sinonasal undifferentiated carcinoma with a combinatory immunotherapy approach. Transl Oncol, 2024. 44: p. 101943. 10. Waldmann, T.A., Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol, 2018. 10(12). 11. Lee, S. and K. Margolin, Cytokines in cancer immunotherapy. Cancers (Basel), 2011. 3(4): p. 3856-93. 12. Berraondo, P., et al., Cytokines in clinical cancer immunotherapy. Br J Cancer, 2019. 120(1): p. 6-15. 13. Atallah-Yunes, S.A. and M.J. Robertson, Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol, 2022. 13: p. 872010. 14. Raeber, M.E., D. Sahin, and O. Boyman, Interleukin-2-based therapies in cancer. Sci Transl Med, 2022. 14(670): p. eabo5409. 15. Rosenberg, S.A., IL-2: the first effective immunotherapy for human cancer. J Immunol, 2014. 192(12): p. 5451-8. 16. Liao, W., J.X. Lin, and W.J. Leonard, Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 2013. 38(1): p. 13-25. 17. Waters, R.S., et al., The effects of interleukin-2 on immune response regulation. Math Med Biol, 2018. 35(1): p. 79-119. 18. Niederlova, V., et al., IL-2-driven CD8(+) T cell phenotypes: implications for immunotherapy. Trends Immunol, 2023. 44(11): p. 890-901. 19. Ye, C., D. Brand, and S.G. Zheng, Targeting IL-2: an unexpected effect in treating immunological diseases. Signal Transduct Target Ther, 2018. 3: p. 2. 20. Donohue, J.H. and S.A. Rosenberg, The fate of interleukin-2 after in vivo administration. J Immunol, 1983. 130(5): p. 2203-8. 21. Shah, N.R., et al., High-dose interleukin-2 therapy related adverse events and implications on imaging. Diagn Interv Radiol, 2021. 27(5): p. 684-689. 22. Jackaman, C., et al., IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol, 2003. 171(10): p. 5051-63. 23. Yasuda, K., et al., Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci, 2011. 102(7): p. 1257-63. 24. Liu, M., et al., Expression, purification, and characterization of a functional mutant recombinant human interleukin-2. Protein Pept Lett, 2010. 17(10): p. 1280-4. 25. Belmont, H.J., et al., Potent antitumor activity of a tumor-specific soluble TCR/IL-2 fusion protein. Clin Immunol, 2006. 121(1): p. 29-39. 26. Penafuerte, C., et al., The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res, 2009. 69(23): p. 9020-8. 27. Foss, F.M., Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann N Y Acad Sci, 2001. 941: p. 166-76. 28. Saleh, M.N., et al., Antitumor activity of DAB389IL-2 fusion toxin in mycosis fungoides. J Am Acad Dermatol, 1998. 39(1): p. 63-73. 29. Liu, M., et al., A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. Cancer Immunol Immunother, 2013. 62(5): p. 889-95. 30. Liu, M., et al., Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy. J Transl Med, 2016. 14(1): p. 155. 31. Tornesello, A.L., et al., Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules, 2020. 25(12). 32. Qu, B., et al., Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol, 2023. 14: p. 1321386. 33. Jafari, A., et al., Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol, 2022. 12: p. 819563. 34. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75. 35. Hwang, J.S., et al., Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics, 2022. 14(5). 36. Divyashree, M., et al., Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now? Protein Pept Lett, 2020. 27(2): p. 120-134. 37. Sveinbjornsson, B., et al., LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med Chem, 2017. 9(12): p. 1339-1344. 38. Haug, B.E., et al., Discovery of a 9-mer Cationic Peptide (LTX-315) as a Potential First in Class Oncolytic Peptide. J Med Chem, 2016. 59(7): p. 2918-27. 39. Yu, H.Y., et al., Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides. Biochim Biophys Acta, 2013. 1828(11): p. 2720-8. 40. Yu, H.Y., et al., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem, 2010. 11(16): p. 2273-82. 41. Araya, C. and B. Lomonte, Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int, 2007. 31(3): p. 263-8. 42. Sobrinho, J.C., et al., Antitumoral Potential of Snake Venom Phospholipases A2 and Synthetic Peptides. Curr Pharm Biotechnol, 2016. 17(14): p. 1201-1212. 43. Gebrim, L.C., et al., Antitumor effects of snake venom chemically modified Lys49 phospholipase A2-like BthTX-I and a synthetic peptide derived from its C-terminal region. Biologicals, 2009. 37(4): p. 222-9. 44. Maxian, T., et al., Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int J Mol Sci, 2021. 22(16). 45. Moro-Perez, L., et al., Purification and Conformational Characterization of a Novel Interleukin-2 Mutein. Protein J, 2021. 40(6): p. 917-928. 46. Xu, H., et al., Development of IL-15/IL-15Ralpha sushi domain-IgG4 Fc complexes in Pichia pastoris with potent activities and prolonged half-lives. Microb Cell Fact, 2021. 20(1): p. 115. 47. Raeber, M.E., et al., A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine, 2023. 90: p. 104539. 48. Marcus, S.L., et al., Hypovitaminosis C in patients treated with high-dose interleukin 2 and lymphokine-activated killer cells. Am J Clin Nutr, 1991. 54(6 Suppl): p. 1292S-1297S. 49. Den Otter, W., et al., Local therapy of cancer with free IL-2. Cancer Immunol Immunother, 2008. 57(7): p. 931-50. 50. Mizui, M., Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clin Immunol, 2019. 206: p. 63-70. 51. Tegel, H., J. Ottosson, and S. Hober, Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J, 2011. 278(5): p. 729-39. 52. Xie, M., D. Liu, and Y. Yang, Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol, 2020. 10(7): p. 200004. 53. Aria, H. and M. Rezaei, Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother, 2023. 161: p. 114503. 54. Cheah, Y.H., et al., Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines, 2022. 10(5).
|