帳號:guest(3.141.35.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉俊佑
作者(外文):Liu, Chun-Yu
論文名稱(中文):抗菌肽W5K11白介素2融合蛋白以及白介素2之表現和其活性之探討
論文名稱(外文):Expression and Characteristic of W5K11-Interleukin-2(IL-2) fusion protein and IL-2
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
龍鳳娣
口試委員(外文):Chen, Chin-Pan
Lung, Feng-Di
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:110080503
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:50
中文關鍵詞:免疫療法白介素2抗菌胜肽癌症治療抗癌胜肽
外文關鍵詞:Cancer immunotherapyanticancer peptideinterleukin-2 (IL-2)cancer treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:2
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症是人類的主要死因之一,預計又將因人口增加、人口老齡化和與增加癌症易感性相關的生活方式選擇等因素而不減反增。根據世界衛生組織(WHO)的預測,到2040年,全球癌症發生率將增加到約3000萬例,死亡率增加到1600萬例。目前,癌症在全世界人口的第二大死因,對全球公共衛生構成重大挑戰。
目前癌症治療包括化學治療、手術切除、放射治療和激素治療以及癌症免疫治療等。癌症免疫治療相關的藥物包括了抗體、小分子、細胞因子、腫瘤疫苗和胜肽,用以激活免疫系統的特定成員或抑制癌細胞規避免疫反應的信號。其中細胞因子白細胞介素-2(IL-2)在癌症免疫治療中顯示出重要作用。IL-2是由活化T細胞合成的一種強效生長因子,能夠刺激各種免疫細胞群體的活化,IL-2也成為美國食品和藥物管理局批准的第一種用於癌症治療的免疫治療藥物。但IL-2治療在臨床上因為高劑量的全身性施打以及高頻率的給藥導致了高毒性和副作用。為了解決這樣的限制,研究團隊從兩個層面來改善IL-2療法,一個是將全身性的靜脈注射改成局部的瘤內注射,另一個則是將IL-2進行修飾。
根據其他研究團隊先前的研究,他們將抗癌肽與IL-2接合在一起形成抗癌肽-IL-2融合蛋白。在我們實驗室先前的研究中,我們實驗室開發出了多種具有抗癌能力的抗癌胜肽,其中W5K11展現出了對多個癌細胞廣效的抗癌能力同時對正常細胞有著良好的選擇性。因此在這篇研究當中,我們將W5K11與IL-2接合在一起形成W5K11-IL-2,並利用大腸桿菌蛋白質表現系統表達W5K11-IL-2以及IL-2。根據實驗結果,在W5K11-IL-2中,W5K11端有著跟W5K11相似的抗癌能力,同時IL-2端也有著跟IL-2本身相近的刺激、活化免疫細胞的能力。這樣的結果表明了W5K11-IL-2是一個相當有潛力治療多個癌症的新型癌症免疫治療藥物。
Cancer is one of the leading causes of death worldwide, and its prevalence is expected to rise due to factors such as population growth, aging demographics, and lifestyle choices associated with increased cancer susceptibility. According to the World Health Organization (WHO), by 2040, global cancer incidence is projected to increase to approximately 30 million cases, with mortality rates rising to 16 million cases. Currently, cancer ranks as the second leading cause of death globally, posing a significant public health challenge.
Current cancer treatments include surgical excision, radiotherapy, chemotherapy, hormone therapy, and cancer immunotherapy. Cancer immunotherapy involves various pharmacological agents, including antibodies, small molecules, cytokines, tumor vaccines, and peptides, aimed at activating specific components of the immune system or inhibiting signals that suppress the immune response against cancer cells. Among these, the cytokine interleukin-2 (IL-2) has demonstrated significant efficacy in cancer immunotherapy. IL-2, synthesized by activated T cells, stimulates activation across various immune cell populations and has been the first immunotherapeutic agent approved by the US Food and Drug Administration for cancer treatment. The clinical utility of IL-2 therapy has been constrained by its elevated systemic dosing and frequent administration, resulting in pronounced toxicity and adverse reactions. In response to these constraints, the research team has enhanced IL-2 therapy through dual avenues: transitioning from systemic intravenous delivery to localized intratumoral injection, and undertaking IL-2 modification.
In this study, we incorporated insights from prior research conducted by other teams and amalgamated anticancer peptides with IL-2 to generate anticancer peptide-IL-2 fusion proteins. In preceding investigations within our laboratory, we synthesized a range of anticancer peptides exhibiting robust anticancer efficacy. Notably, W5K11 displayed broad-spectrum anticancer activity against multiple cancer cell types, while demonstrating favorable selectivity towards normal cells.In this study, we fused W5K11 with IL-2 to form W5K11-IL-2 and expressed it using the Escherichia coli protein expression system, alongside IL-2 alone. Experimental results showed that W5K11-IL-2 retained similar anticancer activity to W5K11 and exhibited comparable stimulatory and activation capabilities to IL-2. These findings suggest that W5K11-IL-2 holds promise as a novel cancer immunotherapy agent for treating multiple cancers.
摘要 1
Abstract 3
Abbreviations 5
Chapter 1 Introduction 8
1.1 Cancer trends 8
1.2 Immunotherapy of cancer treatment 8
1.3 Limitations of IL-2 therapy 9
1.4 Optimizations in IL-2 therapy 10
1.5 Anti-cancer peptides 11
1.6 W5K series antimicrobial peptides and W5K11 12
1.7 Aim of this study 13
Chapter 2 Materials and Methods 14
2.1 Reagents, chemical, and cell lines 14
2.2 Construction of the IL-2 and W5K11-IL-2 14
2.3 Expression of IL-2 and W5K11-IL-2 16
2.4 Purification of IL-2 and W5K11-IL-2 and refolding 16
2.5 Further purification of IL-2 and W5K11-IL-2 by RP-HPLC 18
2.6 SDS-PAGE and Western-Blot analysis 19
2.7 IL-2 and W5K11-IL-2 concentration determination 20
2.8 IL-2 enzyme-linked immunosorbent assay (ELISA) 21
2.9 Proliferation assay of CTLL-2 T cell 21
2.10 Cancer cell inhibition assay 22
2.11 Statistical analyses 23
Chapter 3 Results 24
3.1 Construction of the IL-2&W5K11-IL-2 plasmid 24
3.2 Expression and purification of the IL-2&rW5K11-IL-2 24
3.3 Characterization of the IL-2&W5K11-IL-2 25
3.4 Purification of the IL-2&W5K11-IL-2 by RP-HPLC 26
3.5 Binding ability of the IL-2&W5K11-IL-2 with anti-IL-2 antibody 27
3.6 The biological activity of IL-2 of the IL-2&W5K11-IL-2 27
3.7 In vitro cell cytotoxicity of the IL-2&W5K11-IL-2 28
Chapter 4 Discussion 29
Chapter 5 Conclusion 31
Chapter 6 Figuers & Tables 32
Figure 1. The functions of IL-2 in cancer immunotherapy 32
Figure 2. The therapeutic mechanisms of cationic ACPs in cancer cells 33
Figure 3. Gene map of the recombinant plasmid pET-26b(+)-IL-2 34
Figure 4. Gene map of the recombinant plasmid pET-26b(+)-W5K11-IL-2 35
Figure 5. SDS gel page analysis of the IL-2 36
Figure 6. SDS gel page analysis of the W5K11-IL-2 37
Figure 7. Western blot analysis of the IL-2 & W5K11-IL-2 38
Figure 8. Reversed-phase HPLC purification of the IL-2 39
Figure 9. Reversed-phase HPLC purification of the W5K11-IL-2 40
Figure 10. MALDI-TOF mass analysis of the purified IL-2 41
Figure 11. MALDI-TOF mass analysis of the purified W5K11-IL-2 42
Figure 12. Direct ELISA binding assay of the IL-2 standard, purified IL-2, and purified W5K11-IL-2 43
Figure 13. The biological activity of IL-2 of the IL-2 standard, purified IL-2, and purified W5K11-IL-2 44
Figure 14. Anticancer activities of W5K11, purified W5K11-IL2, and purified IL-2 45
Table 1. IC50 (μM) of W5K11, purified W5K11-IL2, and purified IL-2 46
Chapter 7 References 47
Hao, T., et al., An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep, 2019. 9(1): p. 12070.
2. Thun, M.J., et al., The global burden of cancer: priorities for prevention. Carcinogenesis, 2010. 31(1): p. 100-10.
3. (IARC), I.A.f.R.o.C. Estimated number of new cases from 2020 to 2050. 2024 21 April 2024]; Available from: https://gco.iarc.fr/tomorrow/en.
4. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
5. Block, K.I., et al., Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol, 2015. 35 Suppl(Suppl): p. S276-S304.
6. Hoteit, M., et al., Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncol Lett, 2021. 22(3): p. 655.
7. Zhang, L., et al., Peptide-based materials for cancer immunotherapy. Theranostics, 2019. 9(25): p. 7807-7825.
8. Wang, Y., et al., Clinical prognostic significance of xeroderma pigmentosum group C and IFN‑gamma in non‑small cell lung cancer. Oncol Lett, 2024. 27(6): p. 259.
9. Hoke, A.T.K., et al., Targeting sinonasal undifferentiated carcinoma with a combinatory immunotherapy approach. Transl Oncol, 2024. 44: p. 101943.
10. Waldmann, T.A., Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol, 2018. 10(12).
11. Lee, S. and K. Margolin, Cytokines in cancer immunotherapy. Cancers (Basel), 2011. 3(4): p. 3856-93.
12. Berraondo, P., et al., Cytokines in clinical cancer immunotherapy. Br J Cancer, 2019. 120(1): p. 6-15.
13. Atallah-Yunes, S.A. and M.J. Robertson, Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol, 2022. 13: p. 872010.
14. Raeber, M.E., D. Sahin, and O. Boyman, Interleukin-2-based therapies in cancer. Sci Transl Med, 2022. 14(670): p. eabo5409.
15. Rosenberg, S.A., IL-2: the first effective immunotherapy for human cancer. J Immunol, 2014. 192(12): p. 5451-8.
16. Liao, W., J.X. Lin, and W.J. Leonard, Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 2013. 38(1): p. 13-25.
17. Waters, R.S., et al., The effects of interleukin-2 on immune response regulation. Math Med Biol, 2018. 35(1): p. 79-119.
18. Niederlova, V., et al., IL-2-driven CD8(+) T cell phenotypes: implications for immunotherapy. Trends Immunol, 2023. 44(11): p. 890-901.
19. Ye, C., D. Brand, and S.G. Zheng, Targeting IL-2: an unexpected effect in treating immunological diseases. Signal Transduct Target Ther, 2018. 3: p. 2.
20. Donohue, J.H. and S.A. Rosenberg, The fate of interleukin-2 after in vivo administration. J Immunol, 1983. 130(5): p. 2203-8.
21. Shah, N.R., et al., High-dose interleukin-2 therapy related adverse events and implications on imaging. Diagn Interv Radiol, 2021. 27(5): p. 684-689.
22. Jackaman, C., et al., IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol, 2003. 171(10): p. 5051-63.
23. Yasuda, K., et al., Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci, 2011. 102(7): p. 1257-63.
24. Liu, M., et al., Expression, purification, and characterization of a functional mutant recombinant human interleukin-2. Protein Pept Lett, 2010. 17(10): p. 1280-4.
25. Belmont, H.J., et al., Potent antitumor activity of a tumor-specific soluble TCR/IL-2 fusion protein. Clin Immunol, 2006. 121(1): p. 29-39.
26. Penafuerte, C., et al., The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res, 2009. 69(23): p. 9020-8.
27. Foss, F.M., Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann N Y Acad Sci, 2001. 941: p. 166-76.
28. Saleh, M.N., et al., Antitumor activity of DAB389IL-2 fusion toxin in mycosis fungoides. J Am Acad Dermatol, 1998. 39(1): p. 63-73.
29. Liu, M., et al., A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. Cancer Immunol Immunother, 2013. 62(5): p. 889-95.
30. Liu, M., et al., Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy. J Transl Med, 2016. 14(1): p. 155.
31. Tornesello, A.L., et al., Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules, 2020. 25(12).
32. Qu, B., et al., Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol, 2023. 14: p. 1321386.
33. Jafari, A., et al., Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol, 2022. 12: p. 819563.
34. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75.
35. Hwang, J.S., et al., Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics, 2022. 14(5).
36. Divyashree, M., et al., Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now? Protein Pept Lett, 2020. 27(2): p. 120-134.
37. Sveinbjornsson, B., et al., LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med Chem, 2017. 9(12): p. 1339-1344.
38. Haug, B.E., et al., Discovery of a 9-mer Cationic Peptide (LTX-315) as a Potential First in Class Oncolytic Peptide. J Med Chem, 2016. 59(7): p. 2918-27.
39. Yu, H.Y., et al., Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides. Biochim Biophys Acta, 2013. 1828(11): p. 2720-8.
40. Yu, H.Y., et al., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem, 2010. 11(16): p. 2273-82.
41. Araya, C. and B. Lomonte, Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int, 2007. 31(3): p. 263-8.
42. Sobrinho, J.C., et al., Antitumoral Potential of Snake Venom Phospholipases A2 and Synthetic Peptides. Curr Pharm Biotechnol, 2016. 17(14): p. 1201-1212.
43. Gebrim, L.C., et al., Antitumor effects of snake venom chemically modified Lys49 phospholipase A2-like BthTX-I and a synthetic peptide derived from its C-terminal region. Biologicals, 2009. 37(4): p. 222-9.
44. Maxian, T., et al., Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int J Mol Sci, 2021. 22(16).
45. Moro-Perez, L., et al., Purification and Conformational Characterization of a Novel Interleukin-2 Mutein. Protein J, 2021. 40(6): p. 917-928.
46. Xu, H., et al., Development of IL-15/IL-15Ralpha sushi domain-IgG4 Fc complexes in Pichia pastoris with potent activities and prolonged half-lives. Microb Cell Fact, 2021. 20(1): p. 115.
47. Raeber, M.E., et al., A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine, 2023. 90: p. 104539.
48. Marcus, S.L., et al., Hypovitaminosis C in patients treated with high-dose interleukin 2 and lymphokine-activated killer cells. Am J Clin Nutr, 1991. 54(6 Suppl): p. 1292S-1297S.
49. Den Otter, W., et al., Local therapy of cancer with free IL-2. Cancer Immunol Immunother, 2008. 57(7): p. 931-50.
50. Mizui, M., Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clin Immunol, 2019. 206: p. 63-70.
51. Tegel, H., J. Ottosson, and S. Hober, Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J, 2011. 278(5): p. 729-39.
52. Xie, M., D. Liu, and Y. Yang, Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol, 2020. 10(7): p. 200004.
53. Aria, H. and M. Rezaei, Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother, 2023. 161: p. 114503.
54. Cheah, Y.H., et al., Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines, 2022. 10(5).
(此全文20290531後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *