帳號:guest(3.137.179.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林達基
作者(外文):Lin, Ta-Chi
論文名稱(中文):VCP與PLAA對於泛素化蛋白及粒線體外膜蛋白之重要性
論文名稱(外文):The importance of VCP and PLAA for ubiquitinated proteins and mitochondrial outer membrane proteins
指導教授(中文):李政昇
指導教授(外文):Lee, Cheng-Sheng
口試委員(中文):廖品超
李岳倫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:110080501
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:46
中文關鍵詞:泛素—蛋白酶體系統粒線體外膜蛋白粒線體相關降解
外文關鍵詞:mitochondria-associated degradation (MAD)mitochondrial outer membrane proteinsubiquitin-proteasome system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來粒線體的功能的研究擴展的相當廣,其中對於調控蛋白穩態的研究正在快速發展。先前研究已得知調控粒線體外膜蛋白的穩態對於泛素—蛋白酶體系統有高度依賴性,且VCP已被證實在其中扮演相當重要的角色。粒線體相關降解(MAD)途徑在近年來的研究逐漸增多,尤其是在酵母菌的研究中已得知Doa1會與泛素和Cdc48結合,這過程對於降解粒線體外膜蛋白相當重要。本實驗著重在探討Doa1及Cdc48在哺乳動物中的同系物PLAA及VCP對於泛素化蛋白及粒線體外膜蛋白的重要性。藉由PLAA及VCP基因Knockdown,檢測相關蛋白量變化。從實驗結果得知VCP確實會影響泛素化蛋白及粒線體外膜蛋白的降解;PLAA只影響粒線體外膜蛋白的降解。
In recent years, the research on the regulation of mitochondrial protein homeostasis develops rapidly. Previous studies have known that the regulation of the homeostasis of mitochondrial outer membrane (MOM) proteins is highly dependent on the ubiquitin-proteasome system. VCP has been confirmed to play a very important role on it. In addition, research on the mitochondria-associated degradation (MAD) pathway has gradually increased, especially in yeast studies. It has been known that Doa1 binds to ubiquitin and AAA-ATPase Cdc48, which is very important for the degradation of MOM proteins. Here, we focus on the importance of PLAA and VCP, the orthologues of Doa1 and Cdc48 in mammals, respectively. By knocking down the PLAA and VCP genes, change in the amount of ubiquitinated proteins and MOM proteins were detected. From the experimental results, we knew that VCP affected the degradation of ubiquitinated proteins and MOM protein- Mcl1, Mfn1; PLAA only affected the degradation of MOM protein- Mcl1, Mfn1.
一、前文 1
中文摘要 1
ABSTRACT 2
《Acknowledgement》 3
目錄 4
二、正文 6
1. 前言介紹 6
1.1 粒線體的功能 6
1.2 粒線體外膜蛋白 7
1.3 粒線體自噬(mitophagy)與粒線體外膜蛋白之關聯性 8
1.4 粒線體相關降解途徑 Mitochondria-Associated Degradation (MAD) Pathway 10
1.5 含纈酪肽蛋白 (VCP) 及其對於MAD的重要性 12
1.6 磷脂酶A2激活蛋白 (PLAA) 及其與VCP的關係 13
2. 研究目標 15
2.1 實驗假說 15
2.2 實驗目的 15
3. 實驗器材、方法 16
3.1 細胞培養及轉染 16
3.2 小干擾核糖核酸(siRNA)基因Knockdown 16
3.3 化學處理並收成細胞 17
3.4 西方墨點法(western blotting) 18
3.5 定量和統計分析 19
4. 實驗結果 20
4.1 透過siRNA 進行VCP及PLAA基因Knockdown 20
圖1.確認VCP及PLAA之基因Knockdown 21
4.2 VCP基因Knockdown導致泛素化蛋白質的積累 23
4.3 VCP基因Knockdown導致粒線體外膜蛋白積累 23
圖2.VCP基因Knockdown對多重泛素化蛋白之影響 25
圖3.VCP基因Knockdown對粒線體外膜蛋白之影響 28
4.4 PLAA基因Knockdown對泛素化蛋白質的影響 29
4.5 PLAA基因Knockdown導致粒線體外膜蛋白積累 29
圖4.PLAA基因Knockdown對多重泛素化蛋白之影響 31
圖5.PLAA基因Knockdown對粒線體外膜蛋白之影響 33
5. 總結及討論 34
5.1 VCP和PLAA對於泛素化蛋白質和粒線體外膜蛋白降解的影響 34
5.2 VCP影響粒線體外膜蛋白量的程度大於PLAA 34
5.3 實驗遇到的困境 35
5.4 PLAA是否作為VCP的輔因子參與MAD途徑 36
6. 未來實驗方向 38
6.1 PLAA是否協助VCP調控粒線體外膜蛋白的retrotranslocation 38
6.2 觀察PLAA、VCP及粒線體外膜蛋白在空間中的位置 38
6.3 深入探討MAD相關蛋白在維持粒線體功能上扮演的角色 39
三、 參考資料 40
參考文獻 40
附錄 44
補充圖1. VCP Knockdown對PLAA的影響 44
補充圖2. PLAA Knockdown對VCP的影響 45
表格1. 實驗中用到之siRNA 序列 46
Back, S., & Manfredi, J. J. (2021). Knockdown of Target Genes by siRNA In Vitro. Methods Mol Biol, 2267, 159-163. https://doi.org/10.1007/978-1-0716-1217-0_10
Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K., & Hampton, R. Y. (2001). HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell, 12(12), 4114-4128. https://doi.org/10.1091/mbc.12.12.4114
Bolomsky, A., Vogler, M., Kose, M. C., Heckman, C. A., Ehx, G., Ludwig, H., & Caers, J. (2020). MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol, 13(1), 173. https://doi.org/10.1186/s13045-020-01007-9
Brand, M. D., Orr, A. L., Perevoshchikova, I. V., & Quinlan, C. L. (2013). The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol, 169 Suppl 2(0 2), 1-8. https://doi.org/10.1111/bjd.12208
Bulteau, A. L., Szweda, L. I., & Friguet, B. (2006). Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol, 41(7), 653-657. https://doi.org/10.1016/j.exger.2006.03.013
Cao, Y. L., Meng, S., Chen, Y., Feng, J. X., Gu, D. D., Yu, B., Li, Y. J., Yang, J. Y., Liao, S., Chan, D. C., & Gao, S. (2017). MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature, 542(7641), 372-376. https://doi.org/10.1038/nature21077
Chen, Z., Liu, L., Cheng, Q., Li, Y., Wu, H., Zhang, W., Wang, Y., Sehgal, S. A., Siraj, S., Wang, X., Wang, J., Zhu, Y., & Chen, Q. (2017). Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep, 18(3), 495-509. https://doi.org/10.15252/embr.201643309
Costantini, S., Capone, F., Polo, A., Bagnara, P., & Budillon, A. (2021). Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci, 22(18). https://doi.org/10.3390/ijms221810177
Estaquier, J., Vallette, F., Vayssiere, J. L., & Mignotte, B. (2012). The mitochondrial pathways of apoptosis. Adv Exp Med Biol, 942, 157-183. https://doi.org/10.1007/978-94-007-2869-1_7
Falik Zaccai, T. C., Savitzki, D., Zivony-Elboum, Y., Vilboux, T., Fitts, E. C., Shoval, Y., Kalfon, L., Samra, N., Keren, Z., Gross, B., Chasnyk, N., Straussberg, R., Mullikin, J. C., Teer, J. K., Geiger, D., Kornitzer, D., Bitterman-Deutsch, O., Samson, A. O., Wakamiya, M., . . . Chopra, A. K. (2017). Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain, 140(2), 370-386. https://doi.org/10.1093/brain/aww295
Garbincius, J. F., & Elrod, J. W. (2022). Mitochondrial calcium exchange in physiology and disease. Physiol Rev, 102(2), 893-992. https://doi.org/10.1152/physrev.00041.2020
Hall, E. A., Nahorski, M. S., Murray, L. M., Shaheen, R., Perkins, E., Dissanayake, K. N., Kristaryanto, Y., Jones, R. A., Vogt, J., Rivagorda, M., Handley, M. T., Mali, G. R., Quidwai, T., Soares, D. C., Keighren, M. A., McKie, L., Mort, R. L., Gammoh, N., Garcia-Munoz, A., . . . Mill, P. (2017). PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet, 100(5), 706-724. https://doi.org/10.1016/j.ajhg.2017.03.008
Han, H. (2018). RNA Interference to Knock Down Gene Expression. Methods Mol Biol, 1706, 293-302. https://doi.org/10.1007/978-1-4939-7471-9_16
Heo, J. M., Livnat-Levanon, N., Taylor, E. B., Jones, K. T., Dephoure, N., Ring, J., Xie, J., Brodsky, J. L., Madeo, F., Gygi, S. P., Ashrafi, K., Glickman, M. H., & Rutter, J. (2010). A stress-responsive system for mitochondrial protein degradation. Mol Cell, 40(3), 465-480. https://doi.org/10.1016/j.molcel.2010.10.021
Karbowski, M., & Youle, R. J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol, 23(4), 476-482. https://doi.org/10.1016/j.ceb.2011.05.007
Li, W., & Ye, Y. (2008). Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci, 65(15), 2397-2406. https://doi.org/10.1007/s00018-008-8090-6
Liao, P. C., Wolken, D. M. A., Serrano, E., Srivastava, P., & Pon, L. A. (2020). Mitochondria-Associated Degradation Pathway (MAD) Function beyond the Outer Membrane. Cell Rep, 32(2), 107902. https://doi.org/10.1016/j.celrep.2020.107902
Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., Huang, L., Xue, P., Li, B., Wang, X., Jin, H., Wang, J., Yang, F., Liu, P., Zhu, Y., . . . Chen, Q. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 14(2), 177-185. https://doi.org/10.1038/ncb2422
Mouysset, J., Deichsel, A., Moser, S., Hoege, C., Hyman, A. A., Gartner, A., & Hoppe, T. (2008). Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc Natl Acad Sci U S A, 105(35), 12879-12884. https://doi.org/10.1073/pnas.0805944105
Mullally, J. E., Chernova, T., & Wilkinson, K. D. (2006). Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. Mol Cell Biol, 26(3), 822-830. https://doi.org/10.1128/MCB.26.3.822-830.2006
Nandi, D., Tahiliani, P., Kumar, A., & Chandu, D. (2006). The ubiquitin-proteasome system. J Biosci, 31(1), 137-155. https://doi.org/10.1007/BF02705243
Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., & Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev, 17(12), 1475-1486. https://doi.org/10.1101/gad.1093903
Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. EMBO J, 40(3), e104705. https://doi.org/10.15252/embj.2020104705
Papadopoulos, C., Kirchner, P., Bug, M., Grum, D., Koerver, L., Schulze, N., Poehler, R., Dressler, A., Fengler, S., Arhzaouy, K., Lux, V., Ehrmann, M., Weihl, C. C., & Meyer, H. (2017). VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J, 36(2), 135-150. https://doi.org/10.15252/embj.201695148
Park, Y. Y., Nguyen, O. T., Kang, H., & Cho, H. (2014). MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis, 5(4), e1172. https://doi.org/10.1038/cddis.2014.142
Qiu, L., Pashkova, N., Walker, J. R., Winistorfer, S., Allali-Hassani, A., Akutsu, M., Piper, R., & Dhe-Paganon, S. (2010). Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem, 285(1), 365-372. https://doi.org/10.1074/jbc.M109.044685
Sharma, A., Smith, H. J., Yao, P., & Mair, W. B. (2019). Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep, 20(12), e48395. https://doi.org/10.15252/embr.201948395
Sidarala, V., Zhu, J., Levi-D'Ancona, E., Pearson, G. L., Reck, E. C., Walker, E. M., Kaufman, B. A., & Soleimanpour, S. A. (2022). Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nat Commun, 13(1), 2340. https://doi.org/10.1038/s41467-022-29945-7
Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., & Youle, R. J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol, 191(7), 1367-1380. https://doi.org/10.1083/jcb.201007013
Widden, H., & Placzek, W. J. (2021). The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol, 4(1), 1029. https://doi.org/10.1038/s42003-021-02564-6
Wu, X., Li, L., & Jiang, H. (2016). Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. J Cell Biol, 213(1), 49-63. https://doi.org/10.1083/jcb.201510098
Xu, S., Peng, G., Wang, Y., Fang, S., & Karbowski, M. (2011). The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol Biol Cell, 22(3), 291-300. https://doi.org/10.1091/mbc.E10-09-0748
Yang, T., Kozopas, K. M., & Craig, R. W. (1995). The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol, 128(6), 1173-1184. https://doi.org/10.1083/jcb.128.6.1173
Ye, Y., Shibata, Y., Yun, C., Ron, D., & Rapoport, T. A. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 429(6994), 841-847. https://doi.org/10.1038/nature02656
Yeo, B. K., Hong, C. J., Chung, K. M., Woo, H., Kim, K., Jung, S., Kim, E. K., & Yu, S. W. (2016). Valosin-containing protein is a key mediator between autophagic cell death and apoptosis in adult hippocampal neural stem cells following insulin withdrawal. Mol Brain, 9, 31. https://doi.org/10.1186/s13041-016-0212-8
Zhang, F., Sha, J., Wood, T. G., Galindo, C. L., Garner, H. R., Burkart, M. F., Suarez, G., Sierra, J. C., Agar, S. L., Peterson, J. W., & Chopra, A. K. (2008). Alteration in the activation state of new inflammation-associated targets by phospholipase A2-activating protein (PLAA). Cell Signal, 20(5), 844-861. https://doi.org/10.1016/j.cellsig.2008.01.004
Zheng, J., Cao, Y., Yang, J., & Jiang, H. (2022). UBXD8 mediates mitochondria-associated degradation to restrain apoptosis and mitophagy. EMBO Rep, 23(10), e54859. https://doi.org/10.15252/embr.202254859
Zheng, J., Li, L., & Jiang, H. (2019). Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans, 47(5), 1437-1447. https://doi.org/10.1042/BST20190275
Zheng, Z., Han, L., Li, Y., Chen, Z., Yang, W., Liu, C., Tao, M., Jiang, Y., Ke, X., Liu, Y., & Guo, X. (2023). Phospholipase A2-activating protein induces mitophagy through anti-apoptotic MCL1-mediated NLRX1 oligomerization. Biochim Biophys Acta Mol Cell Res, 1870(6), 119487. https://doi.org/10.1016/j.bbamcr.2023.119487
Zhong, Q., Gao, W., Du, F., & Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell, 121(7), 1085-1095. https://doi.org/10.1016/j.cell.2005.06.009
Ziviani, E., Tao, R. N., & Whitworth, A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A, 107(11), 5018-5023. https://doi.org/10.1073/pnas.0913485107
Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3), 909-950. https://doi.org/10.1152/physrev.00026.2013

(此全文20280813後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *