|
英文參考文獻
1. Alqudah, M., Ferruz, L., Martín, E., Qudah, H., & Hamdan, F. (2023), “The Sustainability of Investing in Cryptocurrencies: A Bibliometric Analysis of Research Trends,” International Journal of Financial Studies, 11(3), 1-25. 2. Ammer, M. A., & Aldhyani, T. H. H. (2022), “Deep Learning Algorithm to Predict Cryptocurrency Fluctuation Prices: Increasing Investment Awareness,” Electronics, 11(15), 2349-2370. 3. Ante, L. (2019), “Market Reaction to Exchange Listings of Cryptocurrencies,” https://doi.org/10.13140/RG.2.2.19924.76161 4. Ante, L. (2020), “A Place Next to Satoshi: Foundations of Blockchain and Cryptocurrency Research in Business and Economics,” Scientometrics, 124(2), 1305-1333. 5. Bouteska, A., Abedin, M. Z., Hajek, P., & Yuan, K. (2024), “Cryptocurrency Price Forecasting: A Comparative Analysis of Ensemble Learning and Deep Learning Methods,” International Review of Financial Analysis, 92, 103055-103066. 6. Buterin, V. (2017), “A Next-Generation Smart Contract and Decentralized Application Platform,” https://github.com/ethereum/wiki/wiki/White-Paper 7. Dong, B., Jiang, L., Liu, J., & Zhu, Y. (2022), “Liquidity in the cryptocurrency market and commonalities across anomalies,” International Review of Financial Analysis, 81, 102097-102127. 8. Engle, R. F., & Granger, C. W. J. (1987) , “Co-Integration and Error Correction: Representation, Estimation, and Testing,”Econometrica, 55(2), 251-276. 9. Elliott, R. J., Van Der Hoek *, J., & Malcolm, W. P. (2005), “Pairs Trading,” Quantitative Finance, 5(3), 271-276. 10. Fan, F., Chung, W., Ventre, C., Basios, M., Kanthan, L., Li, L., & Wu, F. (2020), “Ascertaining Price Formation in Cryptocurrency Markets with Deep Learning,” https://doi.org/10.48550/arXiv.2003.00803 11. Fil, M., & Kristoufek, L. (2020), “Pairs Trading in Cryptocurrency Markets,” IEEE Access, 8, 172644-172651. 12. Gandal, N., Hamrick, J. T., Moore, T., & Oberman, T. (2018), “Price manipulation in the Bitcoin ecosystem,” Journal of Monetary Economics, 95, 86-96. 13. Goetzmann, W., Rouwenhorst, K., & Gatev, E. (2006), “Pairs Trading: Performance of a Relative Value Arbitrage Rule,” Review of Financial Studies, 19, 797-827. 14. Gurgul, V., Lessmann, S., & Härdle, W. K. (2023), “Forecasting Cryptocurrency Prices using Deep Learning: Integrating Financial, Blockchain, and Text Data.” https://ideas.repec.org/p/arx/papers/2311.14759.html 15. Hudson, R., & Urquhart, A. (2021), “Technical Trading and Cryptocurrencies,” Annals of Operations Research, 297(1), 191-220. 16. Isaksen, V. (2019), Cointegration and Pairs Trading in Major Cryptocurrencies, Master Thesis, University of Stavanger. 17. Ko, P.-C., Lin, P.-C., Do, H.-T., Kuo, Y.-H., Mai, L. M., & Huang, Y.-F. (2023), “Pairs Trading in Cryptocurrency Markets: A Comparative Study of Statistical Methods,” Investment Analysts Journal, 38(1), 1-18. 18. Krauss, C. (2016), “Statistical Arbitrage Pairs Trading Stragegies: Review and Outlook,” Journal of Economic Surveys, 31, 513-545.
19. Lesa, C., & Hochreiter, R. (2023), “Cryptocurrency Pair Trading,” https://dx.doi.org/10.2139/ssrn.4433530 20. Maleki, N., Nikoubin, A., Rabbani, M., & Zeinali, Y. (2020), “Bitcoin Price Prediction Based on Other Cryptocurrencies Using Machine Learning and Time Series Analysis,” Scientia Iranica, 30(1), 285-301. 21. Nakamoto, S. (2009), “Bitcoin: A Peer-to-Peer Electronic Cash System,” https://metzdowd.com 22. Olsson, y. A. H. M. J. (2019), Pairs Trading, Cryptocurrencies and Cointegration, Master Thesis, Uppsala University. 23. Păuna, C. (2018), “Arbitrage Trading Systems for Cryptocurrencies Design Principles and Server Architecture,” IE Journal, 22(2), 35-42. 24. Peng, S., Prentice, C., Shams, S., & Sarker, T. (2024), “A Systematic Literature Review on the Determinants of Cryptocurrency Pricing,” China Accounting and Finance Review, 26(1), 1-30. 25. Sebastião, H., & Godinho, P. (2021), “Forecasting and Trading Cryptocurrencies with Machine Learning under Changing Market Conditions,” Financial Innovation, 7(1), 1-30. 26. Singh, P. (2022), “Is the Financial Market ready for Cryptocurrency ETFs? A Critical Evaluation,” The Journal of Risk Finance, 23(4), 456-460. 27. Tadi, M., & Kortchemski, I. (2021), “Evaluation of Dynamic Cointegration-based Pairs Trading Strategy in the Cryptocurrency Market,” Studies in Economics and Finance, 38(5), 1054-1075. 28. Wei, M., Sermpinis, G., & Stasinakis, C. (2022), “Forecasting and Trading Bitcoin with Machine Learning Techniques and a Hybrid Volatility/Sentiment Leverage,” Journal of Forecasting, 42(4), 852-871. 中文參考文獻 1. 吳柏松 (2015),「基於共整合配對的交易策略」,碩士論文,國立中山大學應用數學系硏究所。 2. 李則沂 (2018),「配對交易的實務應用」,碩士論文,國立臺北大學統計學系。 3. 郭原亨 (2023),「配對交易策略在加密貨幣市場的績效研究」,碩士論文,國立高雄科技大學智慧商務系。 4. 郭瑋倫 (2021),「透過機器學習及標記技術建構配對交易策略」,碩士論文,國立陽明交通大學數據科學與工程研究所。 5. 陳韋綸 (2017),「運用改良式深度學習方法建構套利策略模型於高頻配對交易」,碩士論文,國立交通大學資訊管理研究所。 6. 賴俞瑾 (2017),「應用機器學習配對交易」,碩士論文,國立中山大學應用數學系研究所。
|