帳號:guest(3.146.178.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施宇軒
作者(外文):Shr, Yu-Shiuan
論文名稱(中文):動態會籍比較:一種針對穩定性和可解釋性的決策樹相似度的測量方法
論文名稱(外文):Dynamic Membership Comparison: A Novel Approach to Measuring Tree Similarity with Stability and Explainability Concerns
指導教授(中文):雷松亞
指導教授(外文):Ray, Soumya
口試委員(中文):徐茉莉
Danks, Nicholas
口試委員(外文):Shmueli, Galit
Danks, Nicholas
學位類別:碩士
校院名稱:國立清華大學
系所名稱:服務科學研究所
學號:110078509
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:69
中文關鍵詞:決策樹比較穩定性可解釋性
外文關鍵詞:decision treecomparisonstabilityinterpretability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著可解釋人工智慧興起,了解模型的解釋性對決策者與人工智慧模型間的信任相當關鍵。決策樹作為最具可解釋性的透明模型之一,因此廣受討論。在使用決策樹
模型於不同應用時,會注重不同的特性,使得客觀的比較決策樹是一個具有挑戰的任務。決策樹對微小的資料變化相當敏感,尤其在回歸任務上,使得決策樹的解釋更加不穩定。基於決策樹的多變,比較決策樹的需求逐漸上升。而我們的目標是,針對資料敏感性問題嚴重的回歸問題,透過建立一個僅依賴於預測值以及獨立變數的演算法來比較不同的決策樹模型。以上,我們提出Dynamic Membership Compariosn 動態會籍比較演算法,同時將決策樹的穩定度以及可解釋性納入演算法的考量來客觀比較決策樹。利用一組受測模型都具有高泛化力的資料來衡量決策樹之間的差異性,並且允許一對多的比較決策樹中的葉節點會籍相似度,針對以上問題提出解方。
With the rise of explainable artificial intelligence (XAI), understanding the interpretability of models is critical for building trust between decision-makers and AI models. Decision Trees, one of the most interpretable and transparent models, have been
widely discussed. However, decision trees can be sensitive to minor changes in data, leading to variations in their structure, predictions, and explanations. This sensitivity is particularly pronounced in regression tasks, compared to classification tasks, making decision tree explanations even more unstable. Hence, there is a need to compare decision trees to understand how similar two trees with different structures and predictions are.

Focusing on the stability issue in the regression task, we propose the "Dynamic Membership Comparison" algorithm to objectively compare decision trees. It is a model-agnostic approach that utilizes a set of data with high generalizability for both models
to measure the similarity between decision trees. Simultaneously, the algorithm considers both the stability and interpretability of decision trees, enabling one-to-many comparisons of the membership similarity of leaf nodes in the decision trees.
摘要 3
Abstract 4
Acknowledgements 6
Table of Contents 7
Chapter 1. Introduction 9
Chapter 2. Tree Comparison 11
2.1. Overview of Regression Decision Trees Algorithm 11
2.2. Terminology of Decision Tree 11
2.3. Considerations of using CART 14
2.4 Tree Comparison Scenarios 16
2.5 Prior Work on Tree Comparison 18
Chapter 3. Dynamic Membership Comparison (DMC) 23
3.1 The Importance of Membership Similarity 23
3.2 Membership Similarity Metric 24
3.3 Optimal Similarity Metric: an upper bound for similarity of two trees 26
3.4 DMC Introduction 27
3.4.1 How the distance (cost) is calculated by DTW 29
3.4.2 Similarity Matrix sorted by predictions 32
3.4.3 Near-diagonal path in sorted matrix 35
3.4.4 Algorithm to compute DMC similarity score 36
Chapter 4. Proposed Application of DMC Procedure 41
4.1. General Procedure 41
4.2. Scenario A 44
4.3. Scenario B 46
Chapter 5. Empirical Demonstration 48
5.1. Dataset Description 48
5.2. Scenario Demonstration 49
5.2.1 Preprocessing Techniques before similarity 50
5.2.2 RESULT 1: Membership Similarity Heatmap Visualization 53
5.2.3 RESULT 2: Inherit DTW Two-Way Plot & Three-Way Plot 55
5.2.4 RESULT3: Membership similarity & Decision rules table for optimal pairing leaves 57
5.2.5 RESULT4: Optimal Similarity and Relative Membership Similarity Ratio 58
Chapter 6. Discussion and Future Work 60
References 63
Glossary of Terms 69
Aggarwal, R., & Singh, N. (2023, February). An Approach to Learn Structural Similarity
between Decision Trees Using Hungarian Algorithm. In Proceedings of 3rd
International Conference on Recent Trends in Machine Learning, IoT, Smart Cities
and Applications: ICMISC 2022 (pp. 185-199). Singapore: Springer Nature
Singapore.
Agrawal, R., & Srikant, R. (2000, May). Privacy-preserving data mining. In Proceedings of
the 2000 ACM SIGMOD international conference on Management of data (pp.
439-450).
Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods.
arXiv preprint arXiv:1806.08049.
Arya, V., Bellamy, R. K., Chen, P. Y., Dhurandhar, A., Hind, M., Hoffman, S. C., ... & Zhang,
Y. (2019). One explanation does not fit all: A toolkit and taxonomy of ai
explainability techniques. arXiv preprint arXiv:1909.03012.
Bakirli, G., & Birant, D. (2017). DTreeSim: A new approach to compute decision tree
similarity using re-mining. Turkish Journal of Electrical Engineering and Computer
Sciences, 25(1), 108-125.
63
Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility
analysis, and optimization: A review. Computers & Chemical Engineering, 108,
250-267.
Bobek, S., Bałaga, P., & Nalepa, G. J. (2021, June). Towards Model-Agnostic Ensemble
Explanations. In International Conference on Computational Science (pp. 39-51).
Springer, Cham.
Bogdanowicz, D., Giaro, K., & Wróbel, B. (2012). TreeCmp: comparison of trees in
polynomial time. Evolutionary Bioinformatics, 8, EBO-S9657.
Breiman, L., & Friedman, J. H. (1984). RA Olshen und CJ Stone. Classification and
regression trees.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning
algorithms. Big data & society, 3(1), 2053951715622512.
Canete-Sifuentes, L., Monroy, R., & Medina-Perez, M. A. (2021). A review and experimental
comparison of multivariate decision trees. IEEE Access, 9, 110451-110479.
Choi, M. (2018). Medical cost personal datasets. Kaggle, Feb. Retrieved May 01, 2023 from
https://www.kaggle.com/datasets/mirichoi0218/insurance.
Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: the
Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program.
AI magazine, 40(2), 44-58.
Hancox-Li, L. (2020, January). Robustness in machine learning explanations: Does it
matter?. In Proceedings of the 2020 conference on fairness, accountability, and
transparency (pp. 640-647).
Honegger, M. (2018). Shedding light on black box machine learning algorithms:
Development of an axiomatic framework to assess the quality of methods that explain
individual predictions. arXiv preprint arXiv:1808.05054.
64
Hu, X., Rudin, C., & Seltzer, M. (2019). Optimal sparse decision trees. Advances in Neural
Information Processing Systems, 32.
Islam, M. Z., & Brankovic, L. (2003). Noise addition for protecting privacy in data mining.
In Engineering Mathematics and Applications Conference (pp. 85-90). Engineering
Mathematics Group, ANZIAM.
Islam, M. Z., Barnaghi, P. M., & Brankovic, L. (2003, December). Measuring data quality:
Predictive accuracy vs. similarity of decision trees. In 6th International Conference on
Computer & Information Technology (Vol. 2, pp. 457-462).
Kamwa, I., Samantaray, S. R., & Joós, G. (2011). On the accuracy versus transparency
trade-off of data-mining models for fast-response PMU-based catastrophe predictors.
IEEE Transactions on Smart Grid, 3(1), 152-161.
Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016, August). Interpretable decision sets: A
joint framework for description and prediction. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining (pp.
1675-1684)
Lakkaraju, H., Kamar, E., Caruana, R., & Leskovec, J. (2017). Interpretable & explorable
approximations of black box models. arXiv preprint arXiv:1707.01154.
Last, M., Maimon, O., & Minkov, E. (2002). Improving stability of decision trees.
International journal of pattern recognition and artificial intelligence, 16(02), 145-159.
Lewis, R. J. (2000, May). An introduction to classification and regression tree (CART)
analysis. In Annual meeting of the society for academic emergency medicine in San
Francisco, California (Vol. 14). San Francisco, CA, USA: Department of Emergency
Medicine Harbor-UCLA Medical Center Torrance.
Liew, C. K., Choi, U. J., & Liew, C. J. (1985). A data distortion by probability distribution.
ACM Transactions on Database Systems (TODS), 10(3), 395-411.
65
Liu, K., Kargupta, H., & Ryan, J. (2005). Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions on
knowledge and Data Engineering, 18(1), 92-106.
Liu, K., Kargupta, H., & Ryan, J. (2005). Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions on
knowledge and Data Engineering, 18(1), 92-106.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30.
Miglio, R., & Soffritti, G. (2004). The comparison between classification trees through
proximity measures. Computational statistics & data analysis, 45(3), 577-593.
Mingers, J. (1989). An empirical comparison of selection measures for decision-tree
induction. Machine learning, 3, 319-342.
Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A multidisciplinary survey and framework for
design and evaluation of explainable AI systems. ACM Transactions on Interactive
Intelligent Systems (TiiS), 11(3-4), 1-45.
Molnar, C. (2020). Interpretable machine learning. Lulu. com.p.
Ntoutsi, I., Kalousis, A., & Theodoridis, Y. (2008, April). A general framework for
estimating similarity of datasets and decision trees: exploring semantic similarity of
decision trees. In Proceedings of the 2008 SIAM international conference on data
mining (pp. 810-821). Society for Industrial and Applied Mathematics.
Perner, P. (2013, March). How to compare and interpret two learnt Decision Trees from the
same Domain?. In 2013 27th International Conference on Advanced Information
Networking and Applications Workshops (pp. 318-322). IEEE.
66
Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker, P. K. (2005).
Surrogate-based analysis and optimization. Progress in aerospace sciences, 41(1),
1-28.
Rath, T. M., & Manmatha, R. (2003, June). Word image matching using dynamic time
warping. In 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings. (Vol. 2, pp. II-II). IEEE.
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology.
IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
Sagi, O., & Rokach, L. (2020). Explainable decision forest: Transforming a decision forest
into an interpretable tree. Information Fusion, 61, 124-138.
Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing,
26(1), 43-49.
Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification in
data mining. International Journal of Science and Research (IJSR), 5(4), 2094-2097.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2), 130.
Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks.
In International conference on machine learning (pp. 3319-3328). PMLR.
Tormene, P., Giorgino, T., Quaglini, S., & Stefanelli, M. (2009). Matching incomplete time
series with dynamic time warping: an algorithm and an application to post-stroke
rehabilitation. Artificial intelligence in medicine, 45(1), 11-34.
Turney, P. (1995). Bias and the quantification of stability. Machine Learning, 20, 23-33.
Vilone, G., & Longo, L. (2021). Notions of explainability and evaluation approaches for
explainable artificial intelligence. Information Fusion, 76, 89-106.
67
w package. Journal of statistical Software, 31, 1-24.
Weber, L., Lapuschkin, S., Binder, A., & Samek, W. (2022). Beyond explaining:
Opportunities and challenges of XAI-based model improvement. Information Fusion.
Weinberg, A. I., & Last, M. (2019). Selecting a representative decision tree from an ensemble
of decision-tree models for fast big data classification. Journal of Big Data, 6(1), 1-17.
Zhang, X., & Jiang, S. (2012). A Splitting Criteria Based on Similarity in Decision Tree Learning. J. Softw., 7(8), 1775-1782.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *