|
Abolghasemi, M., Hyndman, R. J., Spiliotis, E., & Bergmeir, C. (2022). Model selection in reconciling hierarchical time series. Machine Learning, 111, 739–789. 10.1007/s10994-021-06126-z Andrade, L. A. C. G., & Cunha, C. B. (2023). Disaggregated retail forecasting: A gradient boosting approach. Applied Soft Computing, 141, 110283. https://doi.org/10.1016/j.asoc.2023.110283 Bradlow, E. T., et al. (2017). The Role of Big Data and Predictive Analytics in Retailing. Journal of Retailing. https://doi.org/10.1016/j.jretai.2016.12.004 Chen, C., Wang, Y., Huang, G., & Xiong, H. (2019). Hierarchical Demand Forecasting for Factory Production of Perishable Goods. 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 188-193. https://doi.org/10.1109/BigData47090.2019.9006161 Corani, G., Azzimonti, D., Augusto, J. P., & Zaffalon, M. (2021). Probabilistic reconciliation of hierarchical forecast via Bayes’ rule. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III (pp. 211-226). Springer International Publishing. Espasa, A., & Mayo-Burgos, I. (2013). Forecasting aggregates and disaggregates with common features. International Journal of Forecasting, 29(4), 718-732. https://doi.org/10.1016/j.ijforecast.2012.10.004 Fildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of Forecasting, 38(4), 1283-1318. https://doi.org/10.1016/j.ijforecast.2019.06.004 Hollyman, R., Petropoulos, F., & Tipping, M. E. (2021). Understanding forecast reconciliation. European Journal of Operational Research, 294(1), 149-160. https://doi.org/10.1016/j.ejor.2021.01.017. Hyndman, R.J., & Athanasopoulos, G. (2021). Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3 Hyndman, R. J., & O’Hara-Wild, M. (2021). Fable: Forecasting models for tidy time series. R package version 0.3.1. Retrieved from https://cran.r-project.org/web/packages/fable/index.html Jiang, H., Ruan, J., & Sun, J. (2021). Application of Machine Learning Model and Hybrid Model in Retail Sales Forecast. 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA). http://dx.doi.org/10.1109/ICBDA51983.2021.9403224 Kadam, A., Warekar, D., & Kamble, N. (2015). Forecasting the Daily Sales of Perishable Food to Reduce Spoilage in Hypermarket. International Journal for Scientific Research and Development, 3, 264-267. Kolassa, S. (2019). Forecasting the Future of Retail Forecasting. Foresight: The International Journal of Applied Forecasting, (52), 11-19. Kolassa, S. (2019). Forecasting the Future of Retail Forecasting. Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 52, pp. 11-19, Winter. Makkar, G. (2019.). Real-Time Football Prediction Using Weather Data: A Case on Retail Analytics. In Advances in Intelligent Systems and Computing (pp. 395–404). Springer. https://doi.org/10.1007/978- 981-32-9949-8_37 59 Manjili, H. K., & Tabar, M. M. (2011). Postponement a Speculation in Electronics Retailing: Case Studies on Swedish Retailers. O'Hara-Wild, M., Hyndman, R. J., et al. (2021). Fable: Forecasting Models for Tidy Time Series. R package version 0.3.3. Retrieved from https://cran.r-project.org/web/packages/fable/index.html Oliveira, J. M., & Ramos, P. (2019). Assessing the Performance of Hierarchical Forecasting Methods on the Retail Sector. Entropy, 21(4), 436. https://doi.org/10.3390/e21040436 Ou, T. Y., Chen, Y. J., & Tsai, W. L. (2020). Sales forecasting of perishable foods with multiple stores and communities-an empirical study of convenience stores in Taiwan. International Journal of Intelligent Technologies and Applied Statistics, 13(4), 385-409. https://doi.org/10.6148/IJITAS.202012_13(4).0005 Ozkale, B. (2013). Forecasting and Modelling of Cash Payments at Retail Stores: The Case of SAR and Kappe. Pang, S. (2022). Retail Sales Forecast Based on Machine Learning Methods. 2022 6th Annual International Conference on Data Science and Business Analytics (ICDSBA). https://doi.org/10.1109/ICDSBA57203.2022.00030 Petropoulos, Fotios & Grushka-Cockayne, Yael. (2021). Fast and frugal time series forecasting. Savan, E.-E., Gica, O., & Sofică, A. (2020). Retail Demand Forecasting for Small-Medium Enterprises During COVID-19 Pandemic: Case Studies Based on Romanian Convenience Stores. In Lecture Notes in Networks and Systems (pp. 57–70). Springer. https://doi.org/10.1007/978-3-030-82755-7_7 Shmueli, G., & Lichtendahl, K. C., Jr. (2016). Practical time series forecasting with R: A hands-on guide (2nd ed.). Axelrod Schnall Publishers. Yang, C. -L., & Sutrisno, H. (2018). Short-Term Sales Forecast of Perishable Goods for Franchise Business. 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 101-105. http://dx.doi.org/10.1109/KST.2018.8426091
|