帳號:guest(13.59.108.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳紹蓉
作者(外文):Chen, Shao-Rong
論文名稱(中文):探討隱私疑慮對消費者接受金融科技之影響—以顧客區隔為調節變項
論文名稱(外文):Exploring the Impact of Privacy Concerns on Fintech Adoption: The Moderating Role of User Types.
指導教授(中文):丘宏昌
指導教授(外文):Chiu, Hung-Chang
口試委員(中文):謝依靜
尹秦清
口試委員(外文):Hsieh, Yi-Ching
Yin, Chin-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:科技管理研究所
學號:110073510
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:43
中文關鍵詞:隱私疑慮個人資料蒐集理解性自願性金融科技顧客區別
外文關鍵詞:privacy concernspersonal data collectioncomprehensionvoluntarinessFintechuser types
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
網路的普及推動了金融科技的發展,科技有效消除了金融交易中時間和空間的障礙,消費者可以用更低廉的費用在網路上進行儲蓄、借貸、支付和投資。然而個資外洩的新聞頻傳,消費者可能因為隱私疑慮而降低使用金融科技的意願。過去的研究主要關注利益與風險對於金融科技接受度的影響,相對較少文獻探討消費者對於隱私疑慮的感知層面。因此本研究以三種隱私疑慮:「個資理解性」、「個資安全性」、「個資自願性」,分析隱私疑慮對於金融科技接受度的影響,並以顧客區隔作為調節變項。

根據研究的結果,個資安全性和個資自願性對於金融科技接受度皆有顯著影響。另外,個資安全性對於晚期使用者採用金融科技的影響大於早期使用者,由於早期和晚期使用者的特性,他們會對隱私疑慮有不同的感知。因此,金融科技公司蒐集和使用個資的方式會影響到消費者對於使用金融科技的意願。最後,本研究結果能協助企業了解早期和晚期使用者的差異,進而制訂出適合的隱私權聲明降低消費者的疑慮,擴大整體的金融科技接受度。
The popularity of the Internet has driven the development of financial technology, which has effectively eliminated time and space barriers in financial transactions, allowing consumers to save, borrow, pay, and invest online at a lower cost. However, with news of privacy breaches, consumers may be less willing to use Fintech due to privacy concerns. Previous studies have focused on the impact of benefits and risks on Fintech acceptance, yet few literatures have examined the dimensions of consumer privacy concerns. Therefore, this study analyzes the impact of three privacy concerns: "privacy comprehension", "privacy security", and "privacy voluntariness" on the Fintech adoption with user types as a moderation.

According to the results of this study, both privacy security and privacy voluntariness had significant effects on the Fintech adoption. In addition, privacy security has a greater impact on the adoption of fintech for late adopters than early adopters, as they have different perceptions of privacy concerns due to their characteristics. Therefore, the way fintech companies collect and use personal information affects consumers' willingness to use Fintech. To sum up, the results of this study can help companies understand the divergence between early and late adopters so that they can develop appropriate privacy practice to reduce privacy concerns and expand the overall acceptance of Fintech.
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
1.1 Research background and motivation 1
1.2 Research purpose 3
2. Literature Review and Hypotheses 5
2.1 Fintech Adoption 5
2.2 Privacy Concerns 6
2.2.1 Privacy Comprehension 11
2.2.2 Privacy Security 12
2.2.2 Privacy Voluntariness 13
2.3 Moderation: user types 15
3. Research Framework and Methodology 19
3.1 Research Framework and design 19
3.2 Sample and data collection 19
3.3 Measures 20
4. Results 23
4.1 Reliability and construct validity 24
4.2 Common Method Variance (CMV) 26
4.3 Hypotheses Testing 28
4.4 Moderation effect of user types 29
5. Conclusion 35
5.1 Discussion and Implications 35
5.2 Limitation and Future Directions 37
References 39
Abramova, S., & Böhme, R. (2016). Perceived benefit and risk as multidimensional determinants of bitcoin use: A quantitative exploratory study. https://informationsecurity.uibk.ac.at/pdfs/Abramova2016_Bitcoin_ICIS.pdf
Aiello, G., Donvito, R., Acuti, D., Grazzini, L., Mazzoli, V., Vannucci, V., & Viglia, G. (2020). Customers’ Willingness to Disclose Personal Information throughout the Customer Purchase Journey in Retailing: The Role of Perceived Warmth. Journal of Retailing, 96(4), 490–506. https://doi.org/10.1016/J.JRETAI.2020.07.001
Arnold, H. J. (1982). Moderator variables: A clarification of conceptual, analytic, and psychometric issues. Organizational Behavior and Human Performance, 29(2), 143–174. https://doi.org/10.1016/0030-5073(82)90254-9
Bajunaied, K., Hussin, N., & Kamarudin, S. (2023). Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology. Journal of Open Innovation: Technology, Market, and Complexity, 9(1), 100010.
Bansal, G., Zahedi, F. M., & Gefen, D. (2015). The role of privacy assurance mechanisms in building trust and the moderating role of privacy concern. European Journal of Information Systems, 24(6), 624–644. https://doi.org/10.1057/EJIS.2014.41/TABLES/15
Bashir, M., Hayes, C., Lambert, A. D., & Kesan, J. P. (2015). Online Privacy and Informed Consent: The Dilemma of Information Asymmetry. Proceedings of the Association for Information Science and Technology, 52(1), 1–10.
Belanger, F., Hiller, J. S., & Smith, W. J. (2002). Trustworthiness in electronic commerce: the role of privacy, security, and site attributes. The Journal of Strategic Information Systems, 11(3–4), 245–270. https://doi.org/10.1016/S0963-8687(02)00018-5
Dinev, T., & Hart, P. (2006). An Extended Privacy Calculus Model for E-Commerce Transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/ISRE.1060.0080
Erel, I., & Liebersohn, J. (2022). Can FinTech reduce disparities in access to finance? Evidence from the Paycheck Protection Program. Journal of Financial Economics, 146(1), 90-118.
Escobar-Rodríguez, T., & Romero-Alonso, M. (2014). The acceptance of information technology innovations in hospitals: differences between early and late adopters. Behaviour & Information Technology, 33(11), 1231–1243. https://doi.org/10.1080/0144929X.2013.810779
Everett M. Rogers. (1995). Diffusion of innovations (4th ed.). The Free Press, New York, NY.
Faja, S., & Trimi, S. (2006). Influence of the web vendor’s interventions on privacy-related behaviors in e-commerce. Communications of the Association for Information Systems, 17(1), 27. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=2992&context=cais
Fan, L. (2021). User Innovativeness and Fintech Adoption in Indonesia. Journal of Open Innovation: Technology, Market, and Complexity , 7(3), 188. https://doi.org/10.3390/JOITMC7030188
Fan, L. (2022). Mobile investment technology adoption among investors. International Journal of Bank Marketing, 40(1), 50–67. https://doi.org/10.1108/IJBM-11-2020-0551/FULL/PDF
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
Friedman, B., Felten, E., & Washington, L. M. (2000). Informed consent online: A conceptual model and design principles. University of Washington Computer Science & Engineering Technical Report, 8, 00–12. https://dada.cs.washington.edu/research/tr/2000/12/UW-CSE-00-12-02.pdf
Grosso, M., Castaldo, S., Li, H. (Ariel), & Larivière, B. (2020). What Information Do Shoppers Share? The Effect of Personnel-, Retailer-, and Country-Trust on Willingness to Share Information. Journal of Retailing, 96(4), 524–547. https://doi.org/10.1016/J.JRETAI.2020.08.002
Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry, 11(3), 340. https://doi.org/10.3390/SYM11030340
Huarng, K. H., & Yu, T. H. K. (2022). Causal complexity analysis for fintech adoption at the country level. Journal of Business Research, 153, 228-234.
Huei, C. T., Cheng, L. S., Seong, L. C., Khin, A. A., & Bin, R. L. L. (2018). Preliminary study on consumer attitude towards fintech products and services in Malaysia. International Journal of Engineering & Technology, 7(2.29), 166–169. https://doi.org/10.14419/ijet.v7i2.29.13310
Introna, L. D., & Wood, D. (2004). Picturing Algorithmic Surveillance: The Politics of Facial Recognition Systems. Surveillance & Society, 2(2/3), 177–198. http://www.surveillance-and-society.org/cctv.htm
Jahanmir, S. F., & Lages, L. F. (2016). The late-adopter scale: A measure of late adopters of technological innovations. Journal of Business Research, 69(5), 1701–1706. https://doi.org/10.1016/J.JBUSRES.2015.10.041
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 322. https://www.sciencedirect.com/science/article/pii/S074756320900168X
Kim, D., Park, K., Park, Y., & Ahn, J. H. (2019). Willingness to provide personal information: Perspective of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. https://doi.org/10.1016/J.CHB.2018.11.022
Lappeman, J., Marlie, S., Johnson, T., & Poggenpoel, S. (2022). Trust and digital privacy: willingness to disclose personal information to banking chatbot services. Journal of Financial Services Marketing, 1–21. https://doi.org/10.1057/S41264-022-00154-Z/TABLES/15
Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://www.sciencedirect.com/science/article/pii/S0007681317301246
Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130–141. https://www.sciencedirect.com/science/article/pii/S1567422308000598
Lim, H., Kim, D. J., Hur, Y., & Park, K. (2018). Impacts of Perceived Security and Knowledge on Continuous Intention to Use Mobile Fintech Payment Services. International Journal of Human-Computer Interaction, 35(10), 886–898. https://doi.org/10.1080/10447318.2018.1507132
Lim, S. H., Kim, D. J., Hur, Y., & Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. International Journal of Human–Computer Interaction, 35(10), 886-898.
Malhotra, N. K., Schaller, T. K., & Patil, A. (2017). Common Method Variance in Advertising Research: When to Be Concerned and How to Control for It. Journal of Advertising, 46(1), 193–212. https://doi.org/10.1080/00913367.2016.1252287
McWaters, R. J., Bruno, G., Lee, A., & Blake, M. (2015). The future of financial services: How disruptive innovations are reshaping the way financial services are structured, provisioned and consumed. World Economic Forum. www.deloitte.com/about
Milne, G. R., & Culnan, M. J. (2004). Strategies for reducing online privacy risks: Why consumers read (or don’t read) online privacy notices. Journal of Interactive Marketing, 18(3), 15–29. https://doi.org/10.1002/DIR.20009
Morey, T., Forbath, T., & Schoop, A. (2015). Customer data: Designing for transparency and trust. Harvard Business Review, 93(5), 96–105. https://www.academia.edu/download/49352349/CUSTOMER_DATA-DESIGNING_FOR_TRANSPARENCY_AND_TRUST-R1505H-PDF-ENG.desbloqueado.pdf
Mostafa, R. B. (2020). Mobile banking service quality: a new avenue for customer value co-creation. International Journal of Bank Marketing, 38(5), 1107–1132. https://doi.org/10.1108/IJBM-11-2019-0421/FULL/PDF
Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1996). Applied linear statistical models.
Podsakoff, P. M. , MacKenzie, S. B. , Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Ryu, H. S. (2018). What makes users willing or hesitant to use Fintech?: the moderating effect of user type. Industrial Management and Data Systems, 118(3), 541–569. https://doi.org/10.1108/IMDS-07-2017-0325/FULL/PDF
Stewart, H., & Jürjens, J. (2018). Data security and consumer trust in FinTech innovation in Germany. Information and Computer Security, 26(1), 109–128. https://doi.org/10.1108/ICS-06-2017-0039/FULL/PDF
Suryono, R. R., Budi, I., & Purwandari, B. (2020). Challenges and trends of financial technology (Fintech): a systematic literature review. Information, 11(12). https://doi.org/10.3390/info11120590
Venkatesh, V., Hoehle, H., Aloysius, J. A., & Nikkhah, H. R. (2021). Being at the cutting edge of online shopping: Role of recommendations and discounts on privacy perceptions. Computers in Human Behavior, 121, 106785.
Wang, Y., Xiuping, S., & Zhang, Q. (2021). Can fintech improve the efficiency of commercial banks?—An analysis based on big data. Research in international business and finance, 55, 101338.
Wu, K. W., Huang, S. Y., Yen, D. C., & Popova, I. (2012). The effect of online privacy policy on consumer privacy concern and trust. Computers in Human Behavior, 28(3), 889–897. https://doi.org/10.1016/J.CHB.2011.12.008
Zhou, T. (2011). Examining mobile banking user adoption from the perspectives of trust and flow experience. Information Technology and Management 2011 13:1, 13(1), 27–37. https://doi.org/10.1007/S10799-011-0111-8
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *