|
Abramova, S., & Böhme, R. (2016). Perceived benefit and risk as multidimensional determinants of bitcoin use: A quantitative exploratory study. https://informationsecurity.uibk.ac.at/pdfs/Abramova2016_Bitcoin_ICIS.pdf Aiello, G., Donvito, R., Acuti, D., Grazzini, L., Mazzoli, V., Vannucci, V., & Viglia, G. (2020). Customers’ Willingness to Disclose Personal Information throughout the Customer Purchase Journey in Retailing: The Role of Perceived Warmth. Journal of Retailing, 96(4), 490–506. https://doi.org/10.1016/J.JRETAI.2020.07.001 Arnold, H. J. (1982). Moderator variables: A clarification of conceptual, analytic, and psychometric issues. Organizational Behavior and Human Performance, 29(2), 143–174. https://doi.org/10.1016/0030-5073(82)90254-9 Bajunaied, K., Hussin, N., & Kamarudin, S. (2023). Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology. Journal of Open Innovation: Technology, Market, and Complexity, 9(1), 100010. Bansal, G., Zahedi, F. M., & Gefen, D. (2015). The role of privacy assurance mechanisms in building trust and the moderating role of privacy concern. European Journal of Information Systems, 24(6), 624–644. https://doi.org/10.1057/EJIS.2014.41/TABLES/15 Bashir, M., Hayes, C., Lambert, A. D., & Kesan, J. P. (2015). Online Privacy and Informed Consent: The Dilemma of Information Asymmetry. Proceedings of the Association for Information Science and Technology, 52(1), 1–10. Belanger, F., Hiller, J. S., & Smith, W. J. (2002). Trustworthiness in electronic commerce: the role of privacy, security, and site attributes. The Journal of Strategic Information Systems, 11(3–4), 245–270. https://doi.org/10.1016/S0963-8687(02)00018-5 Dinev, T., & Hart, P. (2006). An Extended Privacy Calculus Model for E-Commerce Transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/ISRE.1060.0080 Erel, I., & Liebersohn, J. (2022). Can FinTech reduce disparities in access to finance? Evidence from the Paycheck Protection Program. Journal of Financial Economics, 146(1), 90-118. Escobar-Rodríguez, T., & Romero-Alonso, M. (2014). The acceptance of information technology innovations in hospitals: differences between early and late adopters. Behaviour & Information Technology, 33(11), 1231–1243. https://doi.org/10.1080/0144929X.2013.810779 Everett M. Rogers. (1995). Diffusion of innovations (4th ed.). The Free Press, New York, NY. Faja, S., & Trimi, S. (2006). Influence of the web vendor’s interventions on privacy-related behaviors in e-commerce. Communications of the Association for Information Systems, 17(1), 27. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=2992&context=cais Fan, L. (2021). User Innovativeness and Fintech Adoption in Indonesia. Journal of Open Innovation: Technology, Market, and Complexity , 7(3), 188. https://doi.org/10.3390/JOITMC7030188 Fan, L. (2022). Mobile investment technology adoption among investors. International Journal of Bank Marketing, 40(1), 50–67. https://doi.org/10.1108/IJBM-11-2020-0551/FULL/PDF Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Friedman, B., Felten, E., & Washington, L. M. (2000). Informed consent online: A conceptual model and design principles. University of Washington Computer Science & Engineering Technical Report, 8, 00–12. https://dada.cs.washington.edu/research/tr/2000/12/UW-CSE-00-12-02.pdf Grosso, M., Castaldo, S., Li, H. (Ariel), & Larivière, B. (2020). What Information Do Shoppers Share? The Effect of Personnel-, Retailer-, and Country-Trust on Willingness to Share Information. Journal of Retailing, 96(4), 524–547. https://doi.org/10.1016/J.JRETAI.2020.08.002 Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry, 11(3), 340. https://doi.org/10.3390/SYM11030340 Huarng, K. H., & Yu, T. H. K. (2022). Causal complexity analysis for fintech adoption at the country level. Journal of Business Research, 153, 228-234. Huei, C. T., Cheng, L. S., Seong, L. C., Khin, A. A., & Bin, R. L. L. (2018). Preliminary study on consumer attitude towards fintech products and services in Malaysia. International Journal of Engineering & Technology, 7(2.29), 166–169. https://doi.org/10.14419/ijet.v7i2.29.13310 Introna, L. D., & Wood, D. (2004). Picturing Algorithmic Surveillance: The Politics of Facial Recognition Systems. Surveillance & Society, 2(2/3), 177–198. http://www.surveillance-and-society.org/cctv.htm Jahanmir, S. F., & Lages, L. F. (2016). The late-adopter scale: A measure of late adopters of technological innovations. Journal of Business Research, 69(5), 1701–1706. https://doi.org/10.1016/J.JBUSRES.2015.10.041 Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 322. https://www.sciencedirect.com/science/article/pii/S074756320900168X Kim, D., Park, K., Park, Y., & Ahn, J. H. (2019). Willingness to provide personal information: Perspective of privacy calculus in IoT services. Computers in Human Behavior, 92, 273–281. https://doi.org/10.1016/J.CHB.2018.11.022 Lappeman, J., Marlie, S., Johnson, T., & Poggenpoel, S. (2022). Trust and digital privacy: willingness to disclose personal information to banking chatbot services. Journal of Financial Services Marketing, 1–21. https://doi.org/10.1057/S41264-022-00154-Z/TABLES/15 Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://www.sciencedirect.com/science/article/pii/S0007681317301246 Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130–141. https://www.sciencedirect.com/science/article/pii/S1567422308000598 Lim, H., Kim, D. J., Hur, Y., & Park, K. (2018). Impacts of Perceived Security and Knowledge on Continuous Intention to Use Mobile Fintech Payment Services. International Journal of Human-Computer Interaction, 35(10), 886–898. https://doi.org/10.1080/10447318.2018.1507132 Lim, S. H., Kim, D. J., Hur, Y., & Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. International Journal of Human–Computer Interaction, 35(10), 886-898. Malhotra, N. K., Schaller, T. K., & Patil, A. (2017). Common Method Variance in Advertising Research: When to Be Concerned and How to Control for It. Journal of Advertising, 46(1), 193–212. https://doi.org/10.1080/00913367.2016.1252287 McWaters, R. J., Bruno, G., Lee, A., & Blake, M. (2015). The future of financial services: How disruptive innovations are reshaping the way financial services are structured, provisioned and consumed. World Economic Forum. www.deloitte.com/about Milne, G. R., & Culnan, M. J. (2004). Strategies for reducing online privacy risks: Why consumers read (or don’t read) online privacy notices. Journal of Interactive Marketing, 18(3), 15–29. https://doi.org/10.1002/DIR.20009 Morey, T., Forbath, T., & Schoop, A. (2015). Customer data: Designing for transparency and trust. Harvard Business Review, 93(5), 96–105. https://www.academia.edu/download/49352349/CUSTOMER_DATA-DESIGNING_FOR_TRANSPARENCY_AND_TRUST-R1505H-PDF-ENG.desbloqueado.pdf Mostafa, R. B. (2020). Mobile banking service quality: a new avenue for customer value co-creation. International Journal of Bank Marketing, 38(5), 1107–1132. https://doi.org/10.1108/IJBM-11-2019-0421/FULL/PDF Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1996). Applied linear statistical models. Podsakoff, P. M. , MacKenzie, S. B. , Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879 Ryu, H. S. (2018). What makes users willing or hesitant to use Fintech?: the moderating effect of user type. Industrial Management and Data Systems, 118(3), 541–569. https://doi.org/10.1108/IMDS-07-2017-0325/FULL/PDF Stewart, H., & Jürjens, J. (2018). Data security and consumer trust in FinTech innovation in Germany. Information and Computer Security, 26(1), 109–128. https://doi.org/10.1108/ICS-06-2017-0039/FULL/PDF Suryono, R. R., Budi, I., & Purwandari, B. (2020). Challenges and trends of financial technology (Fintech): a systematic literature review. Information, 11(12). https://doi.org/10.3390/info11120590 Venkatesh, V., Hoehle, H., Aloysius, J. A., & Nikkhah, H. R. (2021). Being at the cutting edge of online shopping: Role of recommendations and discounts on privacy perceptions. Computers in Human Behavior, 121, 106785. Wang, Y., Xiuping, S., & Zhang, Q. (2021). Can fintech improve the efficiency of commercial banks?—An analysis based on big data. Research in international business and finance, 55, 101338. Wu, K. W., Huang, S. Y., Yen, D. C., & Popova, I. (2012). The effect of online privacy policy on consumer privacy concern and trust. Computers in Human Behavior, 28(3), 889–897. https://doi.org/10.1016/J.CHB.2011.12.008 Zhou, T. (2011). Examining mobile banking user adoption from the perspectives of trust and flow experience. Information Technology and Management 2011 13:1, 13(1), 27–37. https://doi.org/10.1007/S10799-011-0111-8
|