帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李柏儀
作者(外文):Lee, Po-Yi
論文名稱(中文):使用多重薄片展頻技術實現電子預共振受激拉曼散射
論文名稱(外文):Using Multiple-Plate Continuum to Demonstrate Electronic Pre-resonance Stimulated Raman Scattering
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang-Da
口試委員(中文):朱士維
陳鎧
口試委員(外文):Chu, Shi-Wei
Chen, Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:110066553
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:56
中文關鍵詞:受激拉曼散射電子預共振多重薄片展頻技術
外文關鍵詞:Stimulated Raman ScatteringElectronic Pre-resonanceMultiple-Plate Continuum
相關次數:
  • 推薦推薦:0
  • 點閱點閱:230
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
受激拉曼散射(SRS)顯微術是一種非常有價值的技術,它可以觀測特定的化學鍵,而無需使用任何標記,然而與螢光相比SRS的靈敏度較低,主要是由於其較低的拉曼截面。為了克服這一限制,人們提出了電子預共振(EPR)效應,通過電子共振來增強核振動從而提高拉曼截面,這種方法涉及調整激發波長,以緊密匹配目標樣品的吸收峰。為了證明EPR-SRS的有效性,需要同時調整pump和Stokes光束的波長,以使它們與目標樣品的吸收峰相吻合,同時保持拉曼位移(Ω)不變。 在這項研究中,我們使用具有極寬頻(600-1300奈米)的多重薄片展頻光源(MPC)來產生pump和Stokes光束,從而實現了“雙波長可調”的特性。我們利用Alexa 635螢光染料的C=C鍵結來展示整個EPR範圍的SRS訊號增強效果,而我們的實驗結果與Albrecht A-term pre-resonance模型非常吻合,顯示出SRS信號強度顯著增加了150倍。此外我們展示了 EPR-SRS 生物成像在 Alexa 635 染色之果蠅腦樣本上的應用,證實了 MPC-EPR-SRS 在生物成像中的可行性和潛力。
Stimulated Raman scattering (SRS) microscopy is a valuable technique for capturing specific chemical bonds without the need for labeling. However, SRS has lower sensitivity compared to fluorescence, mainly due to the challenge of low Raman cross-section. To overcome this limitation, electronic pre-resonance (EPR) effects, which leverage electronic resonance to enhance nuclear vibrations and thereby the Raman cross-section, are well-established. This approach involves tuning the excitation wavelength to closely match the absorption peak of the target sample. In order to demonstrate the effectiveness of EPR-SRS, it is necessary to simultaneously adjust the wavelengths of the pump and Stokes beams to align with the absorption peak of the target sample while maintaining the Raman shift (Ω).
In this study, we employ a multiple-plate continuum (MPC) light source with an extremely broad bandwidth (600-1300 nm) to generate both pump and Stokes beams, providing "dual-wavelength tunability." We showcase the enhancement of the entire EPR range using the C=C mode of the Alexa 635 fluorescent dye. Our experimental findings align closely with the Albrecht A-term pre-resonance model, revealing a remarkable 150-fold increase in SRS signal intensity. Furthermore, we demonstrate the application of EPR-SRS bioimaging on Drosophila brain samples stained with Alexa 635, affirming the feasibility and potential of MPC-EPR-SRS in bioimaging.
摘要.................................................................1
Abstract.............................................................2
Acknowledgements.....................................................4
Table of Contents....................................................5
List of Figures......................................................7
Chapter 1. Introduction.............................................11
Chapter 2. Theory...................................................14
Chapter 3. Materials and Methods....................................28
Chapter 4. Experimental Results.....................................42
Chapter 5. Discussion and Conclusion................................52
References..........................................................55

[1] J. W. Lichtman and J.-A. Conchello, "Fluorescence microscopy," Nature methods, vol. 2, no. 12, pp. 910-919, 2005.
[2] M. J. Sanderson, I. Smith, I. Parker, and M. D. Bootman, "Fluorescence microscopy," Cold Spring Harbor Protocols, vol. 2, no. 10, pdb. top071795, 2014.
[3] W. Tipping, M. Lee, A. Serrels, V. Brunton, and A. Hulme, "Stimulated Raman scattering microscopy: an emerging tool for drug discovery," Chemical Society Reviews, vol. 45, no. 8, pp. 2075-2089, 2016.
[4] D. R. Dietze and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," ChemPhysChem, vol. 17, no. 9, pp. 1224-1251, 2016.
[5] J.-X. Cheng and X. S. Xie, "Coherent Raman scattering microscopy". CRC press, 2016.
[6] K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE Journal of Quantum Electronics, vol. 25, no. 12, pp. 2665-2673, 1989.
[7] L. Wei and W. Min, "Electronic preresonance stimulated Raman scattering microscopy," The journal of physical chemistry letters, vol. 9, no. 15, pp. 4294-4301, 2018.
[8] G.-J. Huang et al., "Electronic Preresonance Stimulated Raman Scattering Spectromicroscopy Using Multiple-Plate Continuum," The Journal of Physical Chemistry B, vol. 127, no. 31, pp. 6896-6902, 2023.
[9] L. Wei et al., "Super-multiplex vibrational imaging," Nature, vol. 544, no. 7651, pp. 465-470, 2017.
[10] M. Zhuge et al., "Ultrasensitive vibrational imaging of retinoids by visible preresonance stimulated raman scattering microscopy," Advanced Science, vol. 8, no. 9, pp. 2003136, 2021.
[11] C.-H. Lu et al., "Generation of intense supercontinuum in condensed media," Optica, vol. 1, no. 6, pp. 400-406, 2014.
[12] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A. Kung, "Supercontinuum generation in a multi-plate medium," Optics express, vol. 24, no. 7, pp. 7224-7231, 2016.
[13] C.-H. Lu et al., "Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration," Optics express, vol. 27, no. 11, pp. 15638-15648, 2019.
[14] B.-H. Chen et al., "Double-Pass Multiple-Plate Continuum for High-Temporal-Contrast Nonlinear Pulse Compression," Frontiers in Photonics, vol. 3, pp. 937622, 2022.
[15] C. V. Raman, "A new radiation," Indian Journal of physics, vol. 2, pp. 387-398, 1928.
[16] T. H. Maiman, "Stimulated optical radiation in ruby," Nature, vol. 187, pp. 493-494, 1960.
[17] P. Maker and R. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Physical Review, vol. 137, no. 3A, pp. A801, 1965.
[18] E. Woodbury and W. Ng, "Ruby laser operation in the near IR," proc. IRE, vol. 50, no. 11, pp. 2347-2348, 1962.
[19] S. A. Asher, "UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 2," Analytical chemistry, vol. 65, no. 4, pp. 201A-210A, 1993.
[20] C. Rolland and P. B. Corkum, "Compression of high-power optical pulses," JOSA B, vol. 5, no. 3, pp. 641-647, 1988.
[21] L. Sirleto, R. Ranjan, and M. A. Ferrara, "Analysis of pulses bandwidth and spectral resolution in femtosecond stimulated Raman scattering microscopy," Applied Sciences, vol. 11, no. 9, p. 3903, 2021.
[22] P. Wang et al., "Far-field imaging of non-fluorescent species with subdiffraction resolution," Nature photonics, vol. 7, no. 6, pp. 449-453, 2013.
[23] H. Wong, D. Neary, E. Jones, P. Fox, and C. Sutcliffe, "Benchmarking spatial resolution in electronic imaging for potential in-situ Electron Beam Melting monitoring," Additive Manufacturing, vol. 29, pp. 100829, 2019.
[24] G.-J. Huang et al., "Towards stimulated Raman scattering spectro-microscopy across the entire Raman active region using a multiple-plate continuum," Optics Express, vol. 30, no. 21, pp. 38975-38984, 2022.
[25] N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature, vol. 418, no. 6897, pp. 512-514, 2002.
[26] T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Applied Physics Letters, vol. 85, no. 1, pp. 25-27, 2004.
[27] C.-S. Liao et al., "Stimulated Raman spectroscopic imaging by microsecond delay-line tuning," Optica, vol. 3, no. 12, pp. 1377-1380, 2016.
[28] B. Manifold, E. Thomas, A. T. Francis, A. H. Hill, and D. Fu, "Denoising of stimulated Raman scattering microscopy images via deep learning," Biomedical optics express, vol. 10, no. 8, pp. 3860-3874, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *