帳號:guest(18.227.24.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許家瑞
作者(外文):Hsu, Chia-Jui
論文名稱(中文):以黑磷發展可調變中紅外發光元件
論文名稱(外文):Mid-infrared tunable light emitters based on black phosphorus
指導教授(中文):劉昌樺
指導教授(外文):Liu, Chang-Hua
口試委員(中文):張佑嘉
陳宣燁
口試委員(外文):Chang, You-Chia
Chen, Shiuan-Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:110066536
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:56
中文關鍵詞:黑磷中紅外發光元件應力
外文關鍵詞:black phosphorusmid-infraredlight emittersstrain
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的日新月異,中紅外發光元件在諸多領域都佔有重要的地位,而人們對於中紅外發光元件的效能及尺寸的微縮產生了濃厚的興趣,在經濟性、製程便利性及多元性的考量下,二維材料作為黑馬迅速竄起,成為科學界及學術界的重點研究項目。而黑磷(BP)因為優異的光電性能,並且能隙在中紅外的範疇,因此已有多項研究將其和其他二維材料結合成異質結構作為中紅外奈米發光元件,但發光波段因為與能隙有關因此多為單一波段,或是僅能微幅調整,導致應用範圍受到侷限,因此若能利用黑磷製成可調變波段的中紅外奈米發光元件,將來在各領域的應用價值以及發展將會是非常令人期待的。
本篇研究報告了將黑磷(BP)置於軟性基板上,透過基板的熱漲冷縮及撓曲對黑磷施加應力,成功地改變其晶格結構,能帶結構也會隨之改變,進而達到中紅外發光波段的調控,這項應力調控技術的價值就是能在不改變材料組成的情況下改變其發光波段。黑磷發光光譜受到壓縮應力會紅移,反之受到拉伸應力會藍移,光致發光光譜波長調控範圍約為3.34-3.84 μm,並且展現出91%的極化率,顯示出黑磷因晶格結構所產生的各向異性,再者實驗發現透過基板反覆的曲折黑磷依然能保持完整性而不破裂,代表光譜的變化受應力的影響是具備可重複性。
接著同樣在軟性基板上製作了石墨烯/黑磷/石墨烯(GRT/BP/GRB)的電致發光元件,透過施加壓縮及拉伸應力,電致發光光譜最大調控範圍為2.9-4.1 μm,在中紅外範圍橫跨了1.2 μm,這是一個引人注目的結果,因為僅透過施加適當的應力,便能實現在中紅外波段進行如此大範圍的發光波段調控。
此研究成果為黑磷在中紅外光譜的應用中擴展出了新的領域,也使中紅外光源往後的發展有了更多可能性,同時更為其他二維材料的應力調控技術做了演示,未來更有助於推動中紅外電子元件的發展,如夜間探測器、氣體感測器、紅外通訊設備以及非入侵性生物標記技術等等,可預期將會對軍事國防、安全檢測及生物醫學等許多領域產生重大的影響。
In the ever-advancing landscape of technology, two-dimensional materials, particularly black phosphorus (BP), have gained substantial importance in the development of mid-infrared light-emitting devices. The quest for improved performance and size reduction in such devices has captured significant attention, primarily driven by considerations of cost-effectiveness, process convenience, and versatility. Consequently, two-dimensional materials have rapidly emerged as a focal point of exploration in the scientific and academic communities. Black phosphorus, renowned for its exceptional optoelectronic properties and its mid-infrared bandgap, has been a subject of extensive research in combination with other two-dimensional materials to create complex structures for mid-infrared nanoscale light-emitting devices. Nevertheless, these devices often exhibit limited emission wavelengths, confined to a single band or with minimal adjustability due to their dependence on the bandgap, thereby restricting their potential applications. This necessitates the development of black phosphorus-based mid-infrared light-emitting devices with tunable emission wavelengths, a highly anticipated endeavor.
This research report presents a novel technique that involves the deposition of black phosphorus (BP) on a flexible substrate, which is then subjected to controlled stress through manipulation of the substrate's thermal expansion, contraction, and bending. This innovative approach effectively alters the lattice structure and band properties of BP, offering precise control over the mid-infrared emission wavelength. The unique value of this stress modulation technique lies in its ability to induce changes in the emission wavelength without altering the material's composition. Under compressive stress, the black phosphorus emission spectrum undergoes a redshift, while under tensile stress, it exhibits a blueshift. The achievable range of tunable photoluminescence wavelength spans approximately 3.34 to 3.84 μm, with an impressive polarization rate of 91%, underscoring the anisotropic nature of black phosphorus. Furthermore, experiments confirm the material's resilience, as it withstands repeated bending without structural damage, confirming the repeatability of stress-induced spectral adjustments.
Moreover, this study fabricates an electrically driven light-emitting device featuring a graphene/black phosphorus/graphene (GRT/BP/GRB) structure on a flexible substrate. By strategically applying both compressive and tensile stress, the electrically driven emission spectrum can be tuned over a substantial range of 2.9 to 4.1 μm, spanning an impressive 1.2 μm within the mid-infrared spectrum. This noteworthy result showcases the capability of achieving significant wavelength tuning in the mid-infrared range through the simple application of appropriate stress.
This research expands the applications of black phosphorus in the mid-infrared spectrum and opens up new possibilities for mid-infrared light sources. It also demonstrates stress modulation techniques for other two-dimensional materials, which could contribute to the development of mid-infrared electronic devices, such as night vision devices, gas sensors, infrared communication equipment, and non-invasive biological labeling techniques. These developments are expected to have a significant impact on various fields, including military defense, security detection, and biomedical applications.
致謝 i
摘要 v
Abstract vii
目錄 x
圖目錄 xiii
第一章 緒論 1
第二章 黑磷材料特性簡介及光致發光及電致發光原理 6
2.1 黑磷(Black Phosphorus)材料簡介 6
2.1.1 晶格結構 7
2.1.2 能帶結構與調控 8
2.2 光電及電子傳輸性質 9
2.3 光致發光 13
2.3.1 光激發與複合原理 13
2.3.2 黑磷光致發光與厚度依賴性 16
2.3.3 黑磷應力依賴性 17
2.3.4 黑磷溫度依賴性 19
2.4 電致發光 20
2.4.1 原理 21
2.4.2 黑磷電致發光應用與發展 21
第三章 元件製備與實驗方法 25
3.1 元件製備 25
3.1.1 機械剝離法 25
3.1.2 材料選擇 26
3.1.3 基板選擇 27
3.1.4 材料轉移 27
3.1.5 元件完成 28
第四章 量測結果與討論 33
4.1 溫度調控黑磷光致發光 33
4.1.1 溫度影響光致發光光譜 35
4.1.2 發光峰值波長與溫度的關係 36
4.1.3 發光峰值強度與溫度的關係 38
4.2 應力調控黑磷光致發光峰值波長及強度 39
4.2.1 應力影響光致發光光譜 40
4.2.2 發光峰值波長與應力的關係 43
4.2.3 發光峰值強度與應力的關係 43
4.3 應力調控黑磷電致發光峰值波長及強度 45
4.3.1 基本IV與電致發光 46
4.3.2 應力影響電致發光光譜 47
4.3.3 發光峰值波長與應力的關係 49
4.3.4 發光峰值強度與應力的關係 50
第五章 結論 52
參考文獻 53
[1] A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, "Surface and Quantum Confinement Effects in ZnO Nanocrystals", The Journal of Physical Chemistry C, vol. 114, no. 43, pp. 18293-18297, 2010, doi: 10.1021/jp103768v.
[2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films", Science, vol. 306, no. 5696, pp. 666-669, 2004, doi: 10.1126/science.1102896.
[3] K. Xu, Z. X. Wang, X. L. Du, M. Safdar, C. Jiang, and J. He, "Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property", Nanotechnology, vol. 24, no. 46, p. 7, 2013, doi: 10.1088/0957-4484/24/46/465705.
[4] A. Chaves et al., "Bandgap engineering of two-dimensional semiconductor materials", npj 2D Material Application, vol. 4, no. 1, p. 21, 2020, doi: 10.1038/s41699-020-00162-4.
[5] Z. M. Zhang, M. Khurram, Z. J. Sun, and Q. F. Yan, "Uniform Tellurium Doping in Black Phosphorus Single Crystals by Chemical Vapor Transport", Inorganic Chemistry, vol. 57, no. 7, pp. 4098-4103, 2018, doi: 10.1021/acs.inorgchem.8b00278.
[6] F. Wu et al., "Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS2 Heterojunction", ACS Applied Materials & Interfaces, vol. 13, no. 22, pp. 26161-26169, 2021, doi: 10.1021/acsami.1c03959.
[7] A. Castellanos-Gomez et al., "Local Strain Engineering in Atomically Thin MoS2", Nano letters, Article vol. 13, no. 11, pp. 5361-5366, 2013, doi: 10.1021/nl402875m.
[8] S. Golovynskyi et al., "Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence", Applied Surface Science, vol. 515, p. 7, 2020, doi: 10.1016/j.apsusc.2020.146033.
[9] S. Yang, Y. Chen, and C. Jiang, "Strain engineering of two-dimensional materials: Methods, properties, and applications", InfoMat, vol. 3, no. 4, pp. 397-420, 2021, doi: 10.1002/inf2.12177.
[10] E. Carre et al., "Excitons in bulk black phosphorus evidenced by photoluminescence at low temperature", 2D Materials, vol. 8, no. 2, p. 6, 2021, doi: 10.1088/2053-1583/abca81.
[11] J. Wu, N. Wang, X. Yan, and H. Wang, "Emerging low-dimensional materials for mid-infrared detection", Nano Research, vol. 14, no. 6, pp. 1863-1877, 2020, doi: 10.1007/s12274-020-3128-7.
[12] X. Ling, H. Wang, S. X. Huang, F. N. Xia, and M. S. Dresselhaus, "The renaissance of black phosphorus", Proceeding of the National Academy Science, vol. 112, no. 15, pp. 4523-4530, 2015, doi: 10.1073/pnas.1416581112.
[13] L. Zhang et al., "High Yield Synthesis of Violet Phosphorus Crystals," Chemistry of Materials, vol. 32, no. 17, pp. 7363-7369, 2020, doi: 10.1021/acs.chemmater.0c02273.
[14] J. L. Zhang et al., "Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus", Nano letter, vol. 16, no. 8, pp. 4903-4908, 2016, doi: 10.1021/acs.nanolett.6b01459.
[15] Y. Xu, Z. Shi, X. Shi, K. Zhang, and H. Zhang, "Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications", Nanoscale, vol. 11, no. 31, pp. 14491-14527, 2019, doi: 10.1039/c9nr04348a.
[16] M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, "Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications", Advanced Materials, vol. 28, no. 39, pp. 8586-8617, 2016, doi: 10.1002/adma.201602254.
[17] A. N. Rudenko and M. I. Katsnelson, "Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus", Physical Review B, vol. 89, no. 20, 2014, doi: 10.1103/PhysRevB.89.201408.
[18] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors", Nano letter, vol. 14, no. 6, pp. 3347-3352, 2014, doi: 10.1021/nl5008085.
[19] N. Higashitarumizu et al., "Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous", Nature Nanotechnology, vol. 18, no. 5, pp. 507-513, May 2023, doi: 10.1038/s41565-023-01335-0.
[20] Y. Takao, H. Asahina, and A. Morita, "Electronic Structure of Black Phosphorus in Tight Binding Approach", Journal of the Physical Society of Japan, vol. 50, no. 10, pp. 3362-3369, 1981, doi: 10.1143/jpsj.50.3362.
[21] H. Asahina, K. Shindo, and A. Morita, "Electronic Structure of Black Phosphorus in Self-Consistent Pseudopotential Approach", Journal of the Physical Society of Japan, vol. 51, no. 4, pp. 1193-1199, 1982, doi: 10.1143/jpsj.51.1193.
[22] N. B. Goodman, L. Ley, and D. W. Bullett, "Valance-band structures of phosphorus allotropes", Physical Review B, vol. 27, no. 12, pp. 7440-7450, 1983, doi: 10.1103/PhysRevB.27.7440.
[23] H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, "Semiconducting black phosphorus: synthesis, transport properties and electronic applications", Chemical Society Reviews, vol. 44, no. 9, pp. 2732-2743, 2015, doi: 10.1039/c4cs00257a.
[24] J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus", Nature Communications, vol. 5, p. 7, 2014, doi: 10.1038/ncomms5475.
[25] J. Tao et al., "Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus", Acs Nano, vol. 9, no. 11, pp. 11362-11370, 2015, doi: 10.1021/acsnano.5b05151.
[26] N. N. Mao et al., "Optical Anisotropy of Black Phosphorus in the Visible Regime", Journal of American Chemical Society, Article vol. 138, no. 1, pp. 300-305, 2016, doi: 10.1021/jacs.5b10685.
[27] X. L. Liu, C. R. Ryder, S. A. Wells, and M. C. Hersam, "Resolving the In-Plane Anisotropic Properties of Black Phosphorus", Small Methods, vol. 1, no. 6, p. 9, 2017, doi: 10.1002/smtd.201700143.
[28] L. Li et al., "Emerging in-plane anisotropic two-dimensional materials", Infomat, vol. 1, no. 1, pp. 54-73, 2019, doi: 10.1002/inf2.12005.
[29] J. T. Yang, Y. Wang, Y. F. Li, H. J. Gao, Y. Chai, and H. M. Yao, "Edge orientations of mechanically exfoliated anisotropic two-dimensional materials", Journal Mechanics and Physics of Solids, vol. 112, pp. 157-168, 2018, doi: 10.1016/j.jmps.2017.11.026.
[30] M. I. Litter, "Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems", Applied catalysis B, vol. 23, no. 2-3, pp. 89-114, 1999, doi: 10.1016/s0926-3373(99)00069-7.
[31] L. Q. Jing et al., "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity", Solar Energy Materials and Solar Cells, vol. 90, no. 12, pp. 1773-1787, 2006, doi: 10.1016/j.solmat.2005.11.007.
[32] A. Copple, N. Ralston, and X. H. Peng, "Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain", Applied Physics Letters, vol. 100, no. 19, p. 4, 2012, doi: 10.1063/1.4718026.
[33] V. Alex, S. Finkbeiner, and J. Weber, "Temperature dependence of the indirect energy gap in crystalline silicon", Journal of Applied Physics, vol. 79, no. 9, pp. 6943-6946, 1996, doi: 10.1063/1.362447.
[34] C. Chen et al., "Bright Mid-Infrared Photoluminescence from Thin-Film Black Phosphorus", Nano letters, vol. 19, no. 3, pp. 1488-1493, 2019, doi: 10.1021/acs.nanolett.8b04041.
[35] H. Chen et al., "Uniaxial Strain-Induced Tunable Mid-infrared Light Emission from Thin Film Black Phosphorus", Journal of Physics Chemistry Letters, vol. 14, no. 8, pp. 2092-2098, 2023, doi: 10.1021/acs.jpclett.3c00145.
[36] T. Y. Chang et al., "Black Phosphorus Mid-Infrared Light-Emitting Diodes Integrated with Silicon Photonic Waveguides", Nano Letters, vol. 20, no. 9, pp. 6824-6830, 2020, doi: 10.1021/acs.nanolett.0c02818.
[37] N. Higashitarumizu, S. Tajima, J. Kim, M. Cai, and A. Javey, "Long operating lifetime mid-infrared LEDs based on black phosphorus", Nature Communications, vol. 14, no. 1, p. 4845, 2023, doi: 10.1038/s41467-023-40602-5.
[38] H. Jawa et al., "Wavelength-Controlled Photocurrent Polarity Switching in BP-MoS2 Heterostructure", Advanced Functional Materials, vol. 32, no. 25, 2022, doi: 10.1002/adfm.202112696.
[39] H. Kim et al., "Actively variable-spectrum optoelectronics with black phosphorus", Nature, vol. 596, no. 7871, pp. 232-237, 2021, doi: 10.1038/s41586-021-03701-1.
[40] A. E. Mag-isa, B. Jang, J. H. Kim, H. J. Lee, and C. S. Oh, "Coefficient of thermal expansion measurements for freestanding nanocrystalline ultra-thin gold films", International journal of precision engineering and manufacturing, vol. 15, no. 1, pp. 105-110, 2014, doi: 10.1007/s12541-013-0311-8.
[41] X. L. Liu, J. D. Wood, K. S. Chen, E. Cho, and M. C. Hersam, "In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus",The journal of physical chemisrty letters, vol. 6, no. 5, pp. 773-778, 2015, doi: 10.1021/acs.jpclett.5b00043.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *