|
[1] A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, "Surface and Quantum Confinement Effects in ZnO Nanocrystals", The Journal of Physical Chemistry C, vol. 114, no. 43, pp. 18293-18297, 2010, doi: 10.1021/jp103768v. [2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films", Science, vol. 306, no. 5696, pp. 666-669, 2004, doi: 10.1126/science.1102896. [3] K. Xu, Z. X. Wang, X. L. Du, M. Safdar, C. Jiang, and J. He, "Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property", Nanotechnology, vol. 24, no. 46, p. 7, 2013, doi: 10.1088/0957-4484/24/46/465705. [4] A. Chaves et al., "Bandgap engineering of two-dimensional semiconductor materials", npj 2D Material Application, vol. 4, no. 1, p. 21, 2020, doi: 10.1038/s41699-020-00162-4. [5] Z. M. Zhang, M. Khurram, Z. J. Sun, and Q. F. Yan, "Uniform Tellurium Doping in Black Phosphorus Single Crystals by Chemical Vapor Transport", Inorganic Chemistry, vol. 57, no. 7, pp. 4098-4103, 2018, doi: 10.1021/acs.inorgchem.8b00278. [6] F. Wu et al., "Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS2 Heterojunction", ACS Applied Materials & Interfaces, vol. 13, no. 22, pp. 26161-26169, 2021, doi: 10.1021/acsami.1c03959. [7] A. Castellanos-Gomez et al., "Local Strain Engineering in Atomically Thin MoS2", Nano letters, Article vol. 13, no. 11, pp. 5361-5366, 2013, doi: 10.1021/nl402875m. [8] S. Golovynskyi et al., "Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence", Applied Surface Science, vol. 515, p. 7, 2020, doi: 10.1016/j.apsusc.2020.146033. [9] S. Yang, Y. Chen, and C. Jiang, "Strain engineering of two-dimensional materials: Methods, properties, and applications", InfoMat, vol. 3, no. 4, pp. 397-420, 2021, doi: 10.1002/inf2.12177. [10] E. Carre et al., "Excitons in bulk black phosphorus evidenced by photoluminescence at low temperature", 2D Materials, vol. 8, no. 2, p. 6, 2021, doi: 10.1088/2053-1583/abca81. [11] J. Wu, N. Wang, X. Yan, and H. Wang, "Emerging low-dimensional materials for mid-infrared detection", Nano Research, vol. 14, no. 6, pp. 1863-1877, 2020, doi: 10.1007/s12274-020-3128-7. [12] X. Ling, H. Wang, S. X. Huang, F. N. Xia, and M. S. Dresselhaus, "The renaissance of black phosphorus", Proceeding of the National Academy Science, vol. 112, no. 15, pp. 4523-4530, 2015, doi: 10.1073/pnas.1416581112. [13] L. Zhang et al., "High Yield Synthesis of Violet Phosphorus Crystals," Chemistry of Materials, vol. 32, no. 17, pp. 7363-7369, 2020, doi: 10.1021/acs.chemmater.0c02273. [14] J. L. Zhang et al., "Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus", Nano letter, vol. 16, no. 8, pp. 4903-4908, 2016, doi: 10.1021/acs.nanolett.6b01459. [15] Y. Xu, Z. Shi, X. Shi, K. Zhang, and H. Zhang, "Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications", Nanoscale, vol. 11, no. 31, pp. 14491-14527, 2019, doi: 10.1039/c9nr04348a. [16] M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, "Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications", Advanced Materials, vol. 28, no. 39, pp. 8586-8617, 2016, doi: 10.1002/adma.201602254. [17] A. N. Rudenko and M. I. Katsnelson, "Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus", Physical Review B, vol. 89, no. 20, 2014, doi: 10.1103/PhysRevB.89.201408. [18] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors", Nano letter, vol. 14, no. 6, pp. 3347-3352, 2014, doi: 10.1021/nl5008085. [19] N. Higashitarumizu et al., "Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous", Nature Nanotechnology, vol. 18, no. 5, pp. 507-513, May 2023, doi: 10.1038/s41565-023-01335-0. [20] Y. Takao, H. Asahina, and A. Morita, "Electronic Structure of Black Phosphorus in Tight Binding Approach", Journal of the Physical Society of Japan, vol. 50, no. 10, pp. 3362-3369, 1981, doi: 10.1143/jpsj.50.3362. [21] H. Asahina, K. Shindo, and A. Morita, "Electronic Structure of Black Phosphorus in Self-Consistent Pseudopotential Approach", Journal of the Physical Society of Japan, vol. 51, no. 4, pp. 1193-1199, 1982, doi: 10.1143/jpsj.51.1193. [22] N. B. Goodman, L. Ley, and D. W. Bullett, "Valance-band structures of phosphorus allotropes", Physical Review B, vol. 27, no. 12, pp. 7440-7450, 1983, doi: 10.1103/PhysRevB.27.7440. [23] H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, "Semiconducting black phosphorus: synthesis, transport properties and electronic applications", Chemical Society Reviews, vol. 44, no. 9, pp. 2732-2743, 2015, doi: 10.1039/c4cs00257a. [24] J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus", Nature Communications, vol. 5, p. 7, 2014, doi: 10.1038/ncomms5475. [25] J. Tao et al., "Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus", Acs Nano, vol. 9, no. 11, pp. 11362-11370, 2015, doi: 10.1021/acsnano.5b05151. [26] N. N. Mao et al., "Optical Anisotropy of Black Phosphorus in the Visible Regime", Journal of American Chemical Society, Article vol. 138, no. 1, pp. 300-305, 2016, doi: 10.1021/jacs.5b10685. [27] X. L. Liu, C. R. Ryder, S. A. Wells, and M. C. Hersam, "Resolving the In-Plane Anisotropic Properties of Black Phosphorus", Small Methods, vol. 1, no. 6, p. 9, 2017, doi: 10.1002/smtd.201700143. [28] L. Li et al., "Emerging in-plane anisotropic two-dimensional materials", Infomat, vol. 1, no. 1, pp. 54-73, 2019, doi: 10.1002/inf2.12005. [29] J. T. Yang, Y. Wang, Y. F. Li, H. J. Gao, Y. Chai, and H. M. Yao, "Edge orientations of mechanically exfoliated anisotropic two-dimensional materials", Journal Mechanics and Physics of Solids, vol. 112, pp. 157-168, 2018, doi: 10.1016/j.jmps.2017.11.026. [30] M. I. Litter, "Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems", Applied catalysis B, vol. 23, no. 2-3, pp. 89-114, 1999, doi: 10.1016/s0926-3373(99)00069-7. [31] L. Q. Jing et al., "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity", Solar Energy Materials and Solar Cells, vol. 90, no. 12, pp. 1773-1787, 2006, doi: 10.1016/j.solmat.2005.11.007. [32] A. Copple, N. Ralston, and X. H. Peng, "Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain", Applied Physics Letters, vol. 100, no. 19, p. 4, 2012, doi: 10.1063/1.4718026. [33] V. Alex, S. Finkbeiner, and J. Weber, "Temperature dependence of the indirect energy gap in crystalline silicon", Journal of Applied Physics, vol. 79, no. 9, pp. 6943-6946, 1996, doi: 10.1063/1.362447. [34] C. Chen et al., "Bright Mid-Infrared Photoluminescence from Thin-Film Black Phosphorus", Nano letters, vol. 19, no. 3, pp. 1488-1493, 2019, doi: 10.1021/acs.nanolett.8b04041. [35] H. Chen et al., "Uniaxial Strain-Induced Tunable Mid-infrared Light Emission from Thin Film Black Phosphorus", Journal of Physics Chemistry Letters, vol. 14, no. 8, pp. 2092-2098, 2023, doi: 10.1021/acs.jpclett.3c00145. [36] T. Y. Chang et al., "Black Phosphorus Mid-Infrared Light-Emitting Diodes Integrated with Silicon Photonic Waveguides", Nano Letters, vol. 20, no. 9, pp. 6824-6830, 2020, doi: 10.1021/acs.nanolett.0c02818. [37] N. Higashitarumizu, S. Tajima, J. Kim, M. Cai, and A. Javey, "Long operating lifetime mid-infrared LEDs based on black phosphorus", Nature Communications, vol. 14, no. 1, p. 4845, 2023, doi: 10.1038/s41467-023-40602-5. [38] H. Jawa et al., "Wavelength-Controlled Photocurrent Polarity Switching in BP-MoS2 Heterostructure", Advanced Functional Materials, vol. 32, no. 25, 2022, doi: 10.1002/adfm.202112696. [39] H. Kim et al., "Actively variable-spectrum optoelectronics with black phosphorus", Nature, vol. 596, no. 7871, pp. 232-237, 2021, doi: 10.1038/s41586-021-03701-1. [40] A. E. Mag-isa, B. Jang, J. H. Kim, H. J. Lee, and C. S. Oh, "Coefficient of thermal expansion measurements for freestanding nanocrystalline ultra-thin gold films", International journal of precision engineering and manufacturing, vol. 15, no. 1, pp. 105-110, 2014, doi: 10.1007/s12541-013-0311-8. [41] X. L. Liu, J. D. Wood, K. S. Chen, E. Cho, and M. C. Hersam, "In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus",The journal of physical chemisrty letters, vol. 6, no. 5, pp. 773-778, 2015, doi: 10.1021/acs.jpclett.5b00043.
|