|
[1] Gupta, Shefali, et al. "Optimizing the performance of MEMS electrostatic comb drive actuator with different flexure springs." Proceedings of the 2012 COMSOL conference. Bangalore. 2012. [2] Master thesis, Yin-Jie Yang, Institute of Photonics Technologies, National Tsing Hua University, 2022. [3] Master thesis, Dong-Lin Cai, Institute of Photonics Technologies, National Tsing Hua University, 2021. [4] Master thesis, Zheng Jyun, Institute of Photonics Technologies, National Tsing Hua University, 2016. [5] https://tse3.mm.bing.net/th?id=OIP.kDu2I3G8CaUET2wsgdHGfQAAAA&pid=Api&P=0&h=180 [6] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, PRL, 116, 061102 (2016). [7] LIGO Scientific Collaboration, Instrument Science White Paper 2021, LIGO Document: LIGO-T2100298-v2 (2021). [8] Master thesis, Zheng Jyun, Institute of Photonics Technologies, National Tsing Hua University, 2022. [9] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 83, 34-40 (1951). [10] Master thesis, Cai-Ling Luo, Institute of Photonics Technologies, National Tsing Hua University, 2022. [11] L. D. Landau and E. M. Lifshitz, in Theory of Elasticity 3rd ed. (Oxford, Pergamon Press, 1986), Ch.1 [12] https://reurl.cc/qLa94n [13] https://reurl.cc/ZWEar3 [14] https://reurl.cc/XE9Kya [15] https://reurl.cc/b9yKgr [16] https://www.cosmotec-co.jp/products/detail/78/product_id/870 [17] https://reurl.cc/11pNVY [18] Hirose, Eiichi, et al. "Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector." Physical Review D 90.10 (2014): 102004. [19] Vajente, Gabriele, et al. "Amorphous oxides to improve the coatings of future gravitational wave detectors." Bulletin of the American Physical Society 65 (2020). [20] https://dcc.ligo.org/DocDB/0178/G2101731/001/CryoMulti_material_Voyager2021.pdf [21] https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf . [22] Utina, A., et al. "ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors." Classical and quantum gravity 39.21 (2022): 215008. [23] Steinlechner, J., et al. "Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing." Physical Review Letters 120.26 (2018): 263602. [24] Collaboration, T. LIGO Scientific, and J. E. A. Aasi. "Advanced ligo." Class. Quantum Gravity 32.7 (2015): 074001. [25] https://dcc.ligo.org/DocDB/0184/G2201650/001/LVK_CoatingsPlenary.pdf [26]https://dcc.ligo.org/DocDB/0178/M2100169/002/Test%20Mass%20Coating%20Report%20M2100169-v2.pdf [27] KAGRA Collaboration, “Overview of KAGRA: Detector design and construction history”, Phys. 2020, 05A101 (24 pages) [28] 沼田健司. 鏡材料の機械損失に関する研究. Diss. 修士論文, 2000. [29] 森有紀乃. 富山大学理工学教育学部物理学専攻 レーザー物理学研究室. 低温重力波望遠鏡 KAGRA のための鏡の反射膜の機械的散逸測定. 修士論文,2021 [30] https://cn.comsol.com/multiphysics/finite-element-method
[31] https://reurl.cc/eDKX3K [32] https://reurl.cc/GA2exy [33]https://www.hamamatsu.com/us/en/product/optical-sensors/photodiodes/si-photodiode-array/segmented-type-si-photodiode/S5981.html [34] Adhikari, Rana X., et al. "A cryogenic silicon interferometer for gravitational-wave detection." Classical and Quantum Gravity 37.16 (2020): 165003. [35] https://dcc.ligo.org/LIGO-G1802205
|