帳號:guest(3.145.171.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱俐安
作者(外文):Chu,Li-An
論文名稱(中文):量子晶片產生壓縮光場的實驗備制
論文名稱(外文):Experimental preparation of a quantum wafer to generate a squeezed light field
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):李明昌
陳彥宏
口試委員(外文):Lee, Ming-Chang
Chen, Yen-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:110066530
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:量子光學平衡差檢測系統壓縮態
外文關鍵詞:quantum opticsBHD systemsqueezed state
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
量子光學中壓縮態是最具代表性的一種非古典光場,其重要性在於是在一個正交方向上減少量子噪聲,為提高測量的靈敏度提供了獨特的優勢,超越了標準量子限制,目前能應用於量子計算以及量子感測器等。OPA系統擁有將光信號放大的能力,更寬的頻寬,且也用有較高的增益,以及更小的體積,因此及稱光學電路產生的壓縮態有相當大的發展潛力。
本研究中,我們測量了兩片由光纖尾纖波導以及裸波導的量子態。其中以封裝的光纖模組,在350mW的泵浦功率下,可以量測高達-1.72dB的壓縮態,而以此證明瞭在後段自由空間中的平衡零差檢測架構。而未封裝脊波導在350mW的泵浦功率下,量測到的非線性增益為0.34(3.84)倍的去放大(放大),以及-2.65dB的壓縮態以及4.70dB的反壓縮態,以確認在自由空間中測量壓縮態的穩定性。
我們通過量測光纖尾纖波導以及裸波導驗證其產生壓縮光源的量測架構的能力,為之後與中央大學的合作發展整合式量子積體光路有相當大的重要性,而我們也積極的尋找以及製作更加高效的積體壓縮光源測量方法。
The squeezed state in quantum optics is the most representative of a non-classical light field, the importance of which lies in the fact that it reduces the amount of quantum noise in an orthogonal direction, which provides a unique advantage for improving the sensitivity of measurements beyond the standard quantum limit, and can be applied to quantum computation as well as quantum sensors, etc. The OPA system has the ability to amplify the optical signal, wider bandwidths, and also uses a higher gain, as well as smaller size, so it is said that the compressed state generated by optical circuits has considerable potential for development. OPA systems have the ability to amplify optical signals with wider bandwidth, higher gain, and smaller size, so there is considerable potential for the development of compressed states generated by optical circuits.
In this study, we measured two customized packaged and unpackaged ridge waveguides from fiber optic pigtail waveguide and bare waveguide. The encapsulated fiber optic module was able to measure the compressed state up to -1.72 dB at 350 mW pump power, which proved the BHD (Balanced homodyne detection) framework in the back-end free space. As for the unpacked ridge waveguide, a nonlinear gain of 0.34 (3.84) times de-amplification (amplification), a compressed state of -2.65 dB, and an inverse compressed state of 4.70 dB were measured at a pump power of 350 mW, confirming the stability of the compressed state measured in free space.
We have verified our ability to test the measurement architecture of wafer-based compressed light sources through the measurement of commercial customized waveguides, which is very important for the future development of integrated quantum integrated light paths in collaboration with the Central University of China, and we are actively searching for and producing more efficient measurements of the integrated compressed light sources.
摘要------------------------------- 2
ABSTRACT--------------------------- 3
致謝--------------------------------5
目錄--------------------------------7
圖目錄------------------------------9
表目錄-----------------------------11
1 緒論-----------------------12
1.1 引言-----------------------12
2 理論-----------------------14
2.1 非線性光學----------------- 14
2.1.1 非線性光學介質的波動方程式-----------------------14
2.1.2 Sum-Frequency Generation 的耦合波方程式 -------15
2.1.3 相位匹配 ---------------------------------------17
2.1.4 Quasi Phase Matching---------------------------19
2.2 量子光學 ---------------------------------------22
2.2.1 單模場的量化------------------------------------22
2.2.2 正交算符 ---------------------------------------25
2.2.3 相空間-----------------------------------------26
2.2.4 正交壓縮光產生----------------------------------27
3 壓縮光檢測方式----------------------------------30
3.1 平衡零拍檢測方式--------------------------------30
3.2 自平衡零拍檢測方式-------------------------------33
3.3 BHD與SHD的區別----------------------------------36
4 實驗重要元件-------------------------------------37
5 實驗架設 ---------------------------------------42
6 實驗數據以及分析--------------------------------44
6.1 光纖尾纖波導晶片量測-----------------------------45
6.2 裸波導的測量------------------------------------50
7 結論與未來工作----------------------------------60
7.1 結論-------------------------------------------60
7.2 未來工作----------------------------------------61
8 參考文獻 ---------------------------------------62

[1]. Schnabel, R. (2017). "Squeezed states of light and their applications in laser interferometers." Physics Reports, 684, 1-51.
[2]. Andersen, U. L., Gehring, T., Marquardt, C., & Leuchs, G. (2016). "30 years of squeezed light generation." Physica Scripta, 91(5), 053001.
[3]. Yurke B , Stoler D . "Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Physical Review Letters", 1986, 57(1):13.
[4]. R. E. Slusher, L. W Hollberg, B Yurke, J. C. Mertz, and J. F. Valley. "Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters", 1985, 55, 2409–2412.
[5]. ZY Ou, SF Pereira, HJ Kimble, KC Peng. "Realization of the Einstein-Podolsky -Rosen paradox for continuous variables". Applied Physics B,1992, 68(25):3663
[6]. Vaidya, V. D., Morrison, B., Helt, L. G., Shahrokhshahi, R., Mahler, D. H., Collins, M. J., ... & Lavoie, J. (2020). "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device." Science Advances, 6(36), eaba9186.
[7]. Wang, C., Zhang, M., Stern, B., Lipson, M., & Lončar, M. (2018). "Nanophotonic lithium niobate electro-optic modulators." Optics Express, 26(2), 1547-1555.
[8]. Menicucci, N. C., Flammia, S. T., & Pfister, O. (2008). "One-way quantum computing in the optical frequency comb." Physical Review Letters, 101(13), 130501.
[9]. Diamanti, E., & Leverrier, A. (2015). "Distributing secret keys with quantum continuous variables: principle, security and implementations." Entropy, 17(9), 6072-6092.
[10]. Wehner, S., Elkouss, D., & Hanson, R. (2018). "Quantum internet: A vision for the road ahead." Science, 362(6412), eaam9288.
[11]. Okawachi, Y., Yu, M., Cheng, R., Wang, C., Zhang, M., Lončar, M., & Gaeta, A. L. (2020). "Chip-based frequency combs with sub-100 GHz repetition rates." Optics Letters, 45(5), 1244-1247
[12]. Thompson, M. G. (2016). "On-chip quantum interference between silicon photon-pair sources." Nature Photonics, 8(2), 104-108.
[13]. Robert w. boyd. (2008). "Nonlinear Optics. Sciencedirect"
[14]. A. Gomyo, T. Suzuki, and S. Iijima, "Observation of strong ordering in GaxIn12xP alloy semiconductors, " Phys. Rev. Lett. 60, 2645–2648 (1988)
[15]. Sébastien tanzilli , Anthony martin , Florian kaiser, & Marc de micheli. (2012). "On the Genesis and Evolution of Integrated Quantum Optics". 10.1002/lpor.201100010, 1.
[16]. O. Alibart et al., "Quantum photonics at telecom wavelengths based on lithium niobate waveguides," Journal of Optics (United Kingdom), vol. 18, no. 10, 2016
[17]. Christopher gerry, & peter knight. (2004). " Introductory Quantum Optics". Cambridge University Press.
[18]. S. Chelkowski. "Squeezed light and laser interferometric gravitational wave detectors". Ph.D. thesis, Hannover University, 2007.
[19]. T. hirano, K. kotani, & T. ishibashi. (2005). " 3 DB Squeezing by Single-Pass Parametric Amplification in a Periodically Poled KTiOPO4 Crystal" ,Vol. 30, Issue 13, 1722–1724.
[20]. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli(2016), "A fully guided-wave squeezing experiment for fiber quantum networks," Optica 3, 362-365
[21]. T. Kashiwazaki, T. Yamashima, K. Enbutsu, T. Kazama, A. Inoue, K. Fukui, M. Endo, T. Umeki, A. Furusawa, (2023) " Over-8-db squeezed light generation by a broadband waveguide optical parametric amplifier toward fault-tolerant ultra-fast quantum computers ," Appl. Phys. Lett. 122, 234003
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *