帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾麒鴻
作者(外文):Tseng, Chi-Hung
論文名稱(中文):利用雙光纖布拉格光柵低成本使用光功率量測脈搏波型 :脈波時域血壓估計
論文名稱(外文):Low-Cost Blood Pressure Estimation Using Dual Fiber Bragg Gratings for Pulse Waveform Measurement
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):劉文豐
李夢麟
口試委員(外文):Liu, Wen-Fung
Li, Meng-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:110066528
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:41
中文關鍵詞:光纖感測血壓估計布拉格光柵感測雙布拉格光纖光柵脈搏波型
外文關鍵詞:fiber sensorfiber bragg gratingblood pressuredual bragg gratingpulse waveform
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光纖布拉格柵會反射特定波長的源 ,其反射的波長與光柵間寬度有關 ,透過對光 柵施以應變及溫度化,會改其光的寬進而布拉格反射波長。通常製作一個以光纖布拉格柵為主的感測器,需要干涉儀 或者是光譜儀 去解調光所反射的波 長,但是光干涉儀 及光譜儀 的造價成本相對昂貴,並且體積也龐大若是作為一個監測 日常脈搏波型的裝置,顯然不是 一個 很好的提案。
在市面上流通的使用袖帶式透過壓力阻斷血液動計是目前場便宜且能夠準 確量測血壓的監儀器,其缺點也相對明顯不外乎為兩一體積過於龐大造成攜帶困難,另一缺點則是只能單次測量並需要定的時間
本文 旨在透過光學的方式開發一能夠及時並連續測量血壓之計, 並利用光纖布拉格 光柵的原理 製造一透過光功率解調而不是波長,並以此 方法來降低許多的成本 。
Fiber Bragg gratings reflect specific wavelengths of light, and the reflected wavelength is related to the grating period. By applying strain and temperature changes to the grating, the grating period and the fibers refractive index can be altered, thus changing the reflected power. Typically, constructing a sensor based on fiber Bragg gratings requires an optical interferometer or spectrometer to demodulate the reflected wavelength. However, these instruments are relatively expensive and bulky, making them less ideal for a device aimed at monitoring any measurand.
The commonly-used blood pressure monitors in the market employ cuff-based systems that block blood flow through pressure occlusion. These devices are cost-effective and accurate for measuring blood pressure. However, they have two major drawbacks. Firstly, they are bulky, making them inconvenient to carry around. Secondly, they can only provide only one measurements at one operation and require a certain amount of time for each measurement.
The aim of this study is to develop a blood pressure monitor that can measure blood pressure in real time by using an optical approach. By leveraging the principle of fiber Bragg gratings, we aim to create a system that uses optical power demodulation instead of wavelength demodulation, thereby reducing the overall cost.
一、 摘要................................. I
二、 Abstract ............................ II
三、 致謝.................................. III
四、 目錄................................. IV
五、 圖目錄 .............................. VI
六、 表目錄 .............................. VIII
一、 緒論................................... 1
1.1 前言 ................................ 1
1.2 文獻回顧 ........................................ 3
1.2.1 FBG傳感器回顧 ............... 3
1.2.2 感測生理參數的FBG傳感器 ............ 3
1.2.3 感測脈搏訊號的相關文獻 ................ 4
二、 實驗原理 ............................................. 6
2.1 市售血壓原理 ................................ 6
2.1.1 柯氏音法 ......................................... 6
2.1.2 示波法 ................................. 8
2.2 光纖及元件原理 ........................... 9
2.2.1 全反射 ...................................... 9
2.2.2 光纖基本原理 .................. 10
2.2.3 布拉格光柵原理 ....................... 11
2.2.4 光纖布拉格光柵原理及感測方法 ............................................. 12
2.2.5 摻鉺光纖(Erbium-Doped Fiber) ..................... 15
2.2.6 光纖耦合器 .......................................... 16
2.2.7 光隔離器(isolator)............................. 17
2.3 脈波圖 .................................................... 18
三、 實驗介紹與流程 ..................................... 19
V
3.1 實驗架構 ............................................... 19
3.1.1 實驗光學架構 .................................... 19
3.1.2 矽膠模架構 ........................................ 22
3.1.3 擷取訊號裝置 .................................... 24
3.1.4 量測方式 ........................................... 25
3.1.5 血壓估計 ............................................ 28
四、 實驗結果與分析 ...................................... 31
4.1 實驗步驟 ................................................... 31
4.2 實驗結果 ................................................... 32
五、 結論與未來展望 ...................................... 38
六、 參考資料 .................................................. 40
[1] X. Yang, Y. Liu, X. Sun, X. Yang and J. Yao (2021). "Strain- and Temperature-Sensing Characteristics of Fiber Ring Laser Sensor With Cascaded Fabry–Perot Interferometer and FBG." IEEE Trans. Instrum. Meas. 70: 1-7.
[2] D. Lo Presti, C. Massaroni, C. S. Jorge Leitão, M. De Fátima Domingues, M. Sypabekova, D. Barrera, I. Floris, L. Massari, C. M. Oddo, S. Sales, I. I. Iordachita, D. Tosi and E. Schena (2020). "Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review." IEEE Access 8: 156863-156888.
[3] Sharath Umesh, Sukreet Raju, Apoorva Girish and Asokan Sundarrajan (2013). "Blood pressure evaluation using sphygmomanometry assisted by arterial pulse waveform detection by fiber Bragg grating pulse device." Journal of Biomedical Optics 18(6): 067010.
[4] C. Leitão, M. Fátima Domingues, S. Novais, C. Tavares, J. Pinto, C. Marques and P. Antunes (2018). Arterial pulses assessed with FBG based films: a smart skin approach. Proc.SPIE.
[5] Yuki Haseda, Julien Bonefacino, Hwa-Yaw Tam, Shun Chino, Shouhei Koyama and Hiroaki Ishizawa (2019). "Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor." Sensors (Basel, Switzerland) 19(23): 5088.
[6] S. Pant, S. Umesh and S. Asokan (2020). "A Novel Approach to Acquire the Arterial Pulse by Finger Plethysmography Using Fiber Bragg Grating Sensor." IEEE Sensors Journal 20(11): 5921-5928.
[7] Chris T. D. Goodman and Gareth B. Kitchen (2021). "Measuring arterial blood pressure." Anaesthesia & Intensive Care Medicine 22(1): 49-53.
[8] James E. Sharman, Isabella Tan, George S. Stergiou, Carolina Lombardi, Francesca Saladini, Mark Butlin, Raj Padwal, Kei Asayama, Alberto Avolio, Tammy M. Brady, Alan Murray and Gianfranco Parati (2023). "Automated 'oscillometric' blood pressure measuring devices: how they work and what they measure." Journal of human hypertension 37(2): 93-100.
[9] Govind P. Agrawal (2021). Fiber-optic communication systems. Hoboken, NJ, Wiley.
[10] Bashir Ahmed Tahir, Jalil Ali and Rosly Abdul Rahman (2006). "Fabrication of fiber
41
grating by phase mask and its sensing application." Journal of optoelectronics and advanced materials 8(4): 1604.
[11] S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu and R. M. Measures (1993). "A Bragg grating-tuned fiber laser strain sensor system." IEEE Photonics Technology Letters 5(2): 263-266.
[12] Jacques Albert, Li-Yang Shao and Christophe Caucheteur (2013). "Tilted fiber Bragg grating sensors." Laser & Photonics Reviews 7(1): 83-108.
[13] P. Bollond (2005). Erbium Doped Fiber Amplifiers for Lightwave Systems. Encyclopedia of Modern Optics (Second Edition). B. D. Guenther and D. G. Steel. Oxford, Elsevier: 355-363.
[14] Zujie Fang (2012). Fundamentals of optical fiber sensors. Hoboken, N.J, Wiley.
[15] Yale Cheng (2003). Optical Isolators, Circulators. Encyclopedia of Physical Science and Technology (Third Edition). R. A. Meyers. New York, Academic Press: 381-394.
[16] P. A. Schulz (1989). "Wavelength independent Faraday isolator." Applied Optics 28(20): 4458-4464.
[17] Jian-Jun Shu and Yuguang Sun (2007). "Developing classification indices for Chinese pulse diagnosis." Complementary Therapies in Medicine 15(3): 190-198.
[18] A. D. Hughes and K. H. Parker (2009). "Forward and backward waves in the arterial system: impedance or wave intensity analysis?" Medical & biological engineering & computing 47(2): 207-210.
[19] 林育德 (2010). "脈波信號與 PPG信號特徵之相關性研究 ." 中醫藥年報 .
[20] Michael F. O'rourke, Toshio Yaginuma and Albert P. Avolio (1984). "Physiological and pathophysiological implications of ventricular/vascular coupling." Annals of Biomedical Engineering 12(2): 119-134.
[21] Lee Sang-Suk, Son Il-Ho, Choi Jong-Gu, Dong-Hyun Nam, Hong You-Sik and Lee Woo-Beom (2011). "Estimated Blood Pressure Algorithm of Wrist Wearable Pulsimeter Using by Hall Device." Journal of The Korean Physical Society - J KOREAN PHYS SOC 58.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *