帳號:guest(18.191.215.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):饒官仁
作者(外文):Jao, Kuan-Jen
論文名稱(中文):馬赫詹德干涉儀之入侵感測系統:機器學習判別入侵事件類別
論文名稱(外文):Intrusion Detection by Using Mach-Zehnder Interferometer: Machine Learning for Classifying Intrusion Events
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):劉文豐
廖顯奎
口試委員(外文):Liu, Wen-Fung
Liaw, Shien-Kuei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:110066521
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:76
中文關鍵詞:馬赫詹德干涉儀遞歸圖卷積神經網絡
外文關鍵詞:Mach-Zehnder InterferometerRecurrence PlotConvolutional Neural Network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗為馬赫詹德干涉儀(Mach-Zehnder Interferometer,MZI)搭配自製窄線寬雷射為光源之分布式入侵感測系統,透過對於入侵感測系統做出三種入侵行為,分別為環境干擾、輕拍及重拍。從入侵感測系統取得不同事件的一維時域訊號波形,透過設立重拍之閾值將事件做分類,其閾值Signal Amplitude為2,Level Crossing為12,Frequency Ratio為0.15,並透過一維時域訊號波形轉換為二維循環圖(Recurrence Plot)之訊號預處理,讓不同事件的時域訊號波形具有明顯的差異性。
將不同事件遞歸圖形做事件標記,丟入卷積神經網絡(Convolutional Neural Network,CNN)中進行訓練及更新參數並改良測試模型以提升模型的事件判別準確率,經過數個模型去做比較改良,實驗後最終模型的準確率達到86.66 %。一張圖取樣時間為10 ms,每100張為一組的1 s數據組,透過判別數據組中成分比例來判別數據組為何種事件以及檢測模型準確性,在模型最後設立成分比例閾值後來進行數據組的判別,經過實驗後模型在數據組上具有不錯的判別表現,環境干擾、輕拍與重拍的數據組準確率都有達到九成以上。
This experiment involves a Mach-Zehnder Interferometer (MZI) integrated with a self-made narrow linewidth laser as the light source for a distributed intrusion detection system. Three types of signals disturbance arising from different behaviors, namely environment signal, tap signal, and knock signal, are generated for study in the intrusion detection system. One-dimensional time-domain signal waveforms are obtained from the intrusion detection system for different events. A threshold of knocking to classify the event for intrusion is set with Signal Amplitude at 2, Level Crossing at 12, and Frequency Ratio at 0.15. The preprocessing step is performed to transform the time-domain signal waveforms into two-dimensional recurrence plots, enhancing the distinguishability between different event signals.
Different events are labeled based on the recurrence plots and fed into a Convolutional Neural Network (CNN) for training and parameter updating. The CNN model is continuously improved to enhance the accuracy of identifying events. After comparing and refining several models through experiments, the final model achieves an accuracy of 86.66%. Each image has a sampling time of 10 ms, and a data set consists of 100 images taken within a 1 s time frame. The classification of data sets into different types of events and the evaluation of model accuracy are based on the proportions of different event components. After setting criterion for each type of event at the end of the model, the data sets are classified in the experiment. The model shows good performance in data set classification, with accuracy exceeding 90% for identifying environment disturbance, tapping, and knocking data sets.
目錄
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目標 3
1.3 文獻回顧-光纖入侵感測系統 4
1.3.1 相位敏感光時域反射儀(Ф-OTDR)[15] 4
1.3.2 薩格納克干涉儀(Sagnac Interferometer,SI)[16] 5
1.3.3 非對稱雙馬赫詹德干涉儀(Asymmetric Dual Mach-Zehnder Interferometer)[17] 7
1.4 文獻回顧-機器學習用於入侵感測系統 11
1.4.1 放射狀基底函數網絡(Radial Basis Function network)[18] 11
1.4.2 格拉姆角場(Gramian Angular Field,GAF)搭配卷積神經網絡(Convolutional Neural Network,CNN)[19] 15
第二章 實驗原理與架構 20
2.1 自製光纖雷射光源 20
2.2 馬赫詹德干涉儀入侵感測系統架構 28
2.3 時域訊號轉換二維遞歸圖形(Recurrence Plot)[20] 33
2.4 判別入侵事件機器學習架構—卷積神經網絡 36
2.4.1 卷積層(Convolution Layers) 36
2.4.2 激活層(Activation Layers) 38
2.4.3 池化層(Pooling Layers) 40
2.4.4 展平層(Flatten Layer) 41
2.4.5 全連接層(Fully Connected Layers) 42
第三章 實驗結果與分析 45
3.1 時域訊號預處理與分析 45
3.2 判斷事件相關參數與閾值 51
3.2.1 Frequency Ratio(FR) 51
3.2.2 Level Crossing (LC) 52
3.2.3 Signal Amplitude(SA) 53
3.3 CNN模型設計與分析比較 54
第四章 結論與未來展望 71
4.1 結論 71
4.2 未來展望 72
參考文獻 73

[1] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, vol. 113, pp. 1151–1158, 1966.
[2] J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Optics Letters, vol. 39, no. 15, pp. 4309-4312, 2014.
[3] Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer,” IEEE Sensors Journal, vol. 14, no. 1, pp.167-170, 2014.
[4] F. Zhu, Y. Zhang, and L. Xia, “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
[5] X. Zhang and W. Peng, “Bent fiber interferometer,” Journal of Lightwave Technology, vol. 33, no. 15, pp. 3351-3356, 2015.
[6] M. Deng, Y. Zhao, F. Yin, and T. Zhu, “Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing,” IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2225-2228, 2016.
[7] J. Kong, X. Ouyang, A. Zhou, and L. Yuan, “Highly sensitive directional bending sensor based on eccentric core fiber Mach–Zehnder modal interferometer,” IEEE Sensors Journal, vol. 16, no. 18, pp. 6899-6902, 2016.
[8] R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Optics Letters, vol. 38, no. 9, pp. 1539-1541, 2013.

[9] Y. Zheng, X. Dong, C. C. Chan, P. P. Shum, and H. Su, “Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer,” Optics Communications, vol. 336, pp. 5-8, 2015.
[10] F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sensors Journal, vol. 17, no. 3, pp. 619-622, 2017.
[11] C. Waltermann, J. Koch, and M. Angelmahr, “Femtosecond laser aided processing of optical sensor fibers for 3D medical navigation and tracking (FiberNavi),” 23rd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, Proceedings of SPIE, vol. 9157, pp. 91577G1-91577G-4, 2014.
[12] M. Hassan, E. Gonzalez, V. Hitchins, and I. Ilev, “Detecting bacteria contamination on medical device surfaces using an integrated fiber-optic mid-infrared spectroscopy sensing method,” Sensors and Actuators B: Chemical, vol. 231, pp. 646-654, 2016.
[13] J. Gao, Z. Jiang, Y. Zhao, L. Zhu, and G. Zhao, "Full distributed fiber optical sensor for intrusion detection in application to buried pipelines," Chinese Optics Letters, vol. 3, Issue 11, pp. 633-635 2005.
[14] A. Catalano, F. A. Bruno, C. Galliano, M. Pisco, G. V. Persiano, A. Cutolo, A. Cusano, "An optical fiber intrusion detection system for railway security," Sensors and Actuators A: Physical, vol. 253, pp. 91–100 2017.
[15] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” Journal of Lightwave Technology, vol. 28, no. 22, pp. 3243–3249, 2010.
[16] Paul R. Hoffman and Mark G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” Journal of Lightwave Technology, vol. 22, no. 2, pp. 494–498, 2004.
[17] C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, and M. Tian, “Long-range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” Journal of Lightwave Technology, vol. 34, no. 9, pp. 2235-2239, 2016.
[18] K. Liu et al., "A high-efficiency multiple events discrimination method in optical fiber perimeter security system," Journal of Lightwave Technology, vol. 33, no. 23, pp. 4885-4890, 1 Dec.1, 2015
[19] C. Lyu, Z. Huo, X. Cheng, J. Jiang, A. Alimasi and H. Liu, "Distributed optical fiber sensing intrusion pattern recognition based on GAF and CNN," Journal of Lightwave Technology, vol. 38, no. 15, pp. 4174-4182, 1 Aug.1, 2020.
[20] J.P. Eckmann, S. Kamphorst, D. Ruelle, "Recurrence plots of dynamical systems," Europhysics Letters, vol. 4, pp. 973-977, 1987.
[21] [1] C. Lyu, J. Jiang, Z. Huo, "Open-set events identification based on deep metric-learning for DMZI perimeter system," IEEE Sensors Journal, vol. 20, no. 22, pp. 13620-13628, 2020.
[22] N. Marwan, M. Carmenromano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” Phys. Rep., vol. 438, nos. 5–6, pp. 237–329, Jan. 2007.
[23] D.H. Hubel, T.N. Wiesel, "Receptive fields and functional architecture of monkey striate cortex," Journal of physiology, vol. 195, pp. 215-43, 1968.
[24] K. Fukushima, "Cognitron: A self-organizing multilayered neural network," Biological cybernetics, vol. 20, pp. 121-136, 1975.
[25] Nair, Vinod and Hinton, Geoffrey, "Rectified linear units improve restricted boltzmann machines vinod nair," Proceedings of ICML, vol. 27, pp. 807-814, 2010.
[26] Christopher M. Bishop and Nasser M. Nasrabadi, "Pattern recognition and machine learning," J. Electronic Imaging, vol. 4, p. 0949901, 2006.
[27] H. Yang, "Multiscale recurrence quantification analysis of spatial vectorcardiogram (VCG) signals," IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 339-347, 2011.
[28] Y. Chen and H. Yang, "Multiscale recurrence analysis of long-term nonlinear and nonstationary time series," Chaos, Solitons & Fractals, vol. 45, no. 7, pp. 978-987, 2012.
[29] 謝承諭,「以光纖雷射用於光纖雙馬赫詹德干涉儀入侵感測定位系統:平均法改善定位解析度」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零七年十一月。
[30] M. Claesen and B. De Moor, "Hyperparameter search in machine learning," 2015.
[31] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," International Conference on Learning Representations, 2014.
[32] E. Hinton, Geoffrey, et al. "System and method for addressing overfitting in a neural network." U.S. Patent, No. 9,406,017, 2016.
[33] https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
[34] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," International conference on machine learning, pp. 448-456, 2015.
[35] P. Ma, K. Liu, J. Jiang, Z. Li, P. Li, and T. Liu, "Probabilistic event discrimination algorithm for fiber optic perimeter security Systems," Journal of Lightwave Technology, vol. 36, no. 11, pp. 2069-2075, 2018.
[36] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, "Implicit neural representations with periodic activation functions,", 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *