|
1. A. Goetzberger, C. Hebling, and H. W. Schock, "Photovoltaic materials, history, status and outlook," Materials Science and Engineering: R: Reports, vol. 40, no. 1, p. 1-46, 2003. 2. A. Kumagai, "Texturization using metal catalyst wet chemical etching for multicrystalline diamond wire sawn wafer," Solar Energy Materials and Solar Cells, vol. 133, p. 216-222, 2015. 3. N. Watanabe, Y. Kondo, D. Ide, T. Matsuki, H. Takato, and I. Sakata, "Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire," Progress in Photovoltaics : Research and Applications, vol. 18, no. 7, p. 485-490, 2010. 4. A. W. Smith, and A. Rohatgi, "Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells," Solar Energy Materials and Solar Cells, vol. 29, no. 1, p. 37-49, 1993. 5. E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, no. 2, p. 179-188, 1999. 6. P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, "Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions," Solar Energy Materials and Solar Cells, vol. 70, no. 1, p. 103-113, 2001. 7. D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, "An optimized texturing process for silicon solar cell substrates using TMAH," Solar Energy Materials and Solar Cells, vol. 87, no. 1-4, p. 725-732, 2005. 8. Z. Q. Ying, M. D. Liao, X. Yang, C. Han, J. Q. Li, J. S. Li, et al, "Highperformance black multicrystalline silicon solar cells by a highly simplified metal-catalyzed chemical etching method," IEEE Journal of Photovoltaics, vol. 6, no. 4, p. 888-893, 2016. 9. H. Y. Xu, S. H. Zhong, Y. F. Zhuang, and W. Z. Shen, "Controllable nanoscale inverted pyramids for highly efficient quasi-omnidirectional crystalline silicon solar cells," Nanotechnology, vol. 29, no. 1, p. 015403, 2017. 69 10. Y. Wang, L. X. Yang, Y. P. Liu, Z. X. Mei, W. Chen, J. Q. Li, et al, "Maskless inverted pyramid texturization of silicon," Scientific Reports, vol. 5, p. 10843, 2015. 11. X. W. Dai, R. Jia, G. Y. Su, H. C. Sun, K. Tao, C. Zhang, et al, "The influence of surface structure on diffusion and passivation in multicrystalline silicon solar cells textured by metal assisted chemical etching (MACE) method," Solar Energy Materials and Solar Cells, vol. 186, p. 42-49, 2018. 12. Z. G. Huang, K. Gao, X. G. Wang, C. Xu, X. M. Song, L. X. Shi, et al, "Large-area MACE Si nano-inverted-pyramids for PERC solar cell application," Solar Energy, vol. 188, p. 300-304, 2019. 13. A. Srivastava, D. Sharma, S. Laxmi, J. S. Tawale, P. Pathi, and S. K. Srivastava, "Excellent omnidirectional light trapping properties of inverted micro-pyramid structured silicon by copper catalyzed chemical etching," Optical Materials, vol. 131, p. 112677, 2022. 14. 維基百科. Available from: https://zh.wikipedia.org/zh-tw/%E7%A1%85 15. 國家實驗研究院. Available from: https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252& qcat=0I164512522332344267&sid=0J123382852944198982 16. 光焱科技. Available from: https://enlitechnology.com/zh-hant/blog-zhhant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/ 17. P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, "Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions," Solar Energy Materials and Solar Cells, vol. 70, no. 1, p. 103-113, 2001. 18. D. N. Zhang, J. W. Chen, R. Jia, Z. B. Gao, K. Tao, L. J. Wang, et al, "Texture engineering of mono-crystalline silicon via alcohol-free alkali solution for efficient PERC solar cells," Journal of Energy Chemistry, vol. 71, p. 104-112, 2022. 19. Y. X. Zhang, B. L. Wang, X. P. Li, Z. B. Gao, Y. Zhou, M. H. Li, et al, "A novel additive for rapid and uniform texturing on high-efficiency monocrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 222, p. 110947, 2021. 20. Z. H. Sun, W. Chen, X. H. Zhang, M. Xu, G. G. Xing, X. Q. Chen, et al, "Chain pyramid texturization for better light trapping and efficiency of silicon 70 solar cells," Solar Energy Materials and Solar Cells, vol. 251, p. 112137, 2023. 21. Y. Nishimoto, T. Ishihara, and K. Namba, "Investigation of acidic texturization for multicrystalline silicon solar cells," Journal of the Electrochemical Society, vol. 146, no. 2, p. 457-461, 1999. 22. R. Watanabe, S. Abe, S. Haruyama, T. Suzuki, M. Onuma, and Y. Saito, "Evaluation of a new acid solution for texturization of multicrystalline silicon solar cells," International Journal of Photoenergy, vol. 2013, p. 951303, 2013. 23. J. L. Yang, H. L. Shen, Y. Jiang, and L. H. Sun, "Controllable fabrication and mechanism study of textured ultra-thin silicon wafers via one-step Cu-assisted chemical etching," Materials Science in Semiconductor Processing, vol. 100, p. 79-86, 2019. 24. X. Leng, C. Wang, and Z. Yuan, "Progress in metal-assisted chemical etching of silicon nanostructures," Procedia CIRP, vol. 89, p. 26-32, 2020. 25. Y. M. Yang, P. K. Chu, Z. W. Wu, S. H. Pu, T. F. Hung, K. F. Huo, et al, "Catalysis of dispersed silver particles on directional etching of silicon," Applied Surface Science, vol. 254, no. 10, p. 3061-3066, 2008. 26. J. Y. Li, C. H. Hung, and C. Y. Chen, "Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement," Scientific Reports, vol. 7, p. 17177, 2017. 27. 台灣半導體研究中心,“熱場發射掃描式電子顯微鏡(TFSEM)”. Available from: https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0019. 28. NTHU Y.-C. Hung Lab, “UV/VIS 光譜儀 Lambda 35”. Available from: http://oplab.ipt.nthu.edu.tw/main/node/32. 29. D. N. Zhang, L. J. Wang, R. Jia, K. Tao, S. Jiang, H. Y. Ge, et al, "Improving the performance of PERC silicon solar cells by optimizing the surface inverted pyramid structure on large-area mono-crystalline silicon wafers," Materials Science in Semiconductor Processing, vol. 138, p. 106281, 2021.
|