|
[1] Mohamed Abd Elaziz, Abdelghani Dahou, Naser A Alsaleh, Ammar H Elsheikh, Amal I Saba, and Mahmoud Ahmadein. Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm. Entropy, 23(11):1383, 2021. [2] Shahab Aslani and Haldun Sarnel. A new supervised retinal vessel segmen- tation method based on robust hybrid features. Biomedical Signal Processing and Control, 30:1–12, 2016. [3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481– 2495, 2017. [4] Fernando Cervantes-Sanchez, Ivan Cruz-Aceves, Arturo Hernandez-Aguirre, and Sergio E. Hernandez-Gonzalez, Martha A.and Solorio-Meza. Automatic Segmentation of Coronary Arteries in X-ray Angiograms using Multiscale Analysis and Artificial Neural Networks, 2019. [5] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A Survey of Model Com- pression and Acceleration for Deep Neural Networks, 2020. [6] Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multiscale Vessel Enhancement Filtering. In William M. Wells, Alan Colch- 34 ester, and Scott Delp, editors, Medical Image Computing and Computer- Assisted Intervention — MICCAI’98, pages 130–137, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. [7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network, 2015. [8] A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu, V. Va- sudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le. Searching for MobileNetV3. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1314–1324, Los Alamitos, CA, USA, nov 2019. IEEE Computer Society. [9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017. [10] Ahsan Khawaja, Tariq M. Khan, Khuram Naveed, Syed Saud Naqvi, Naveed Ur Rehman, and Syed Junaid Nawaz. An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser. IEEE Access, 7:164344–164361, 2019. [11] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowl- edge and Data Engineering, 35(4):3347–3366, apr 2023. [12] Liang Liming, Sheng Xiaoqi, Lan Zhimin, and QianYanqun. Retinal Blood Vessel Segmentation Algorithm Based on Multidirectional Filtering, 2022. Optics Journal Article. [13] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In 2015 IEEE Conference on Computer Vision and 35 Pattern Recognition (CVPR), pages 3431–3440, Los Alamitos, CA, USA, jun 2015. IEEE Computer Society. [14] João Lourenço-Silva, Miguel Nobre Menezes, Tiago Rodrigues, Beatriz Silva, Fausto J. Pinto, and Arlindo L. Oliveira. Encoder-Decoder Architectures for Clinically Relevant Coronary Artery Segmentation. In Mukul S. Bansal, Ion Măndoiu, Marmar Moussa, Murray Patterson, Sanguthevar Rajasekaran, Pavel Skums, and Alexander Zelikovsky, editors, Computational Advances in Bio and Medical Sciences, pages 63–78, Cham, 2022. Springer International Publishing. [15] Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. [16] Devin Partida. The Edge of Medical Imaging: How Edge Computing Is Changing Radiology. https://www.medtechintelligence.com/column/ the-edge-of-medical-imaging-how-edge-computing-is-changing-radiology/, July 21, 2021. [17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad- bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De- Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 36 [18] Binjie Qin, Haohao Mao, Yiming Liu, Jun Zhao, Yisong Lv, Yu Ying Zhu, Song Ding, and Xu Chen. Robust PCA Unrolling Network for Super- Resolution Vessel Extraction in X-Ray Coronary Angiography. IEEE Trans- actions on Medical Imaging, 41:3087–3098, 2022. [19] MIT Technology Review. TRANSFORMING HEALTH CARE AT THE EDGE. https://www.technologyreview.com/2021/06/10/1026038/ transforming-health-care-at-the-edge/, June 2021. [20] David Rivest-Hénault, Hari Sundar, and Mohamed Cheriet. Nonrigid 2D/3D Registration of Coronary Artery Models With Live Fluoroscopy for Guidance of Cardiac Interventions. IEEE Transactions on Medical Imaging, 31(8):1557– 1572, 2012. [21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234– 241, Cham, 2015. Springer International Publishing. [22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4510–4520, Los Alamitos, CA, USA, jun 2018. IEEE Computer Society. [23] Agung W. Setiawan, Tati R. Mengko, Oerip S. Santoso, and Andriyan B. Suksmono. Color retinal image enhancement using CLAHE. In International Conference on ICT for Smart Society, pages 1–3, 2013. [24] Marwa Shams, Mohammed A. M. Salem, Safwat Hamad, and Howida A. Shedeed. Coronary artery tree segmentation in computed tomography angiog- 37 raphy using Otsu method. In 2017 Eighth International Conference on Intel- ligent Computing and Information Systems (ICICIS), pages 416–420, 2017. [25] Xingxiang Tao, Hao Dang, Xiaoguang Zhou, Xiangdong Xu, and Danqun Xiong. A Lightweight Network for Accurate Coronary Artery Segmentation Using X-Ray Angiograms. Frontiers in Public Health, 10, 2022. [26] Minghan Yan, Jian Zhou, Cong Luo, Tingfa Xu, and Xiaoxue Xing. Multiscale Joint Optimization Strategy for Retinal Vascular Segmentation. Sensors, 22:1258, 2022. [27] Su Yang, Jihoon Kweon, Jae-Hyung Roh, Jae-Hwan Lee, Heejun Kang, Lae- Jeong Park, Dong Jun Kim, Hyeonkyeong Yang, Jaehee Hur, Do-Yoon Kang, Pil Hyung Lee, Jung-Min Ahn, Soo-Jin Kang, Duk-Woo Park, Seung-Whan Lee, Young-Hak Kim, Cheol Whan Lee, Seong-Wook Park, and Seung-Jung Park. Deep learning segmentation of major vessels in X-ray coronary angiog- raphy. Scientific Reports, 9(1):16897, 2019. [28] Jingyang Zhang, Guotai Wang, Hongzhi Xie, Shuyang Zhang, Zhenghui Shi, and Lixu Gu. Vesselness-constrained robust PCA for vessel enhancement in X-ray coronary angiograms. Physics in medicine and biology, 63(15):155019, 2018. [29] Min-Ling Zhang and Zhi-Hua Zhou. Multilabel Neural Networks with Appli- cations to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering, 18(10):1338–1351, 2006. [30] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. |