|
[1] Andriluka, M., Roth, S., and Schiele, B. People-tracking-by-detection and people-detection-by-tracking. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2008), pp. 1–8. [2] Berclaz, J., Fleuret, F., Turetken, E., and Fua, P. Multiple object tracking using k-shortest paths optimization. IEEE transactions on pattern analysis and machine intelligence(TPAMI) (2011). [3] Bergmann, P., Meinhardt, T., and Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019). [4] Bernardin, K., and Stiefelhagen, R. Evaluating multiple object tracking performance: The clear mot metrics. EURASIP Journal on Image and Video Processing 2008 (01 2008). [5] Braso, G., and Leal-Taixe, L. Learning a neural solver for multiple object tracking. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020). [6] Cao, J., Weng, X., Khirodkar, R., Pang, J., and Kitani, K. Observationcentric sort: Rethinking sort for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022). [7] Chavdarova, T., Baqué, P., Bouquet, S., Maksai, A., Jose, C., Bagautdinov, T., Lettry, L., Fua, P., Van Gool, L., and Fleuret, F. Wildtrack: A multi-camera hd dataset for dense unscripted pedestrian detection. In Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR) (2018), pp. 5030–5039. [8] Chu, P., and Ling, H. Famnet: Joint learning of feature, affinity and multidimensional assignment for online multiple object tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019). [9] Chu, P., Wang, J., You, Q., Ling, H., and Liu, Z. Transmot: Spatialtemporal graph transformer for multiple object tracking. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2023), pp. 4870–4880. [10] Engilberge, M., Liu, W., and Fua, P. Multi-view tracking using weakly supervised human motion prediction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2023), pp. 1582–1592. [11] Ferryman, J., and Shahrokni, A. Pets2009: Dataset and challenge. In 2009 Twelfth IEEE international workshop on performance evaluation of tracking and surveillance(IEEE) (2009), pp. 1–6. [12] Gori, M., Monfardini, G., and Scarselli, F. A new model for learning in graph domains(ieee). In Proceedings of the IEEE International Joint Conference on Neural Networks (2005), pp. 729–734 vol. 2. 37 [13] He, Y., Wei, X., Hong, X., Shi, W., and Gong, Y. Multi-target multi-camera tracking by tracklet-to-target assignment. IEEE Transactions on Image Processing(TIP) 29 (2020), 5191–5205. [14] Hofmann, M., Wolf, D., and Rigoll, G. Hypergraphs for joint multi-view reconstruction and multi-object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2013), pp. 3650–3657. [15] Hou, Y., and Zheng, L. Multiview detection with shadow transformer (and view-coherent data augmentation). In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21) (2021). [16] Hou, Y., Zheng, L., and Gould, S. Multiview detection with feature perspective transformation. In ECCV (2020). [17] Kalman, R. E., and Others. A new approach to linear filtering and prediction problems. Journal of basic Engineering 82, 1 (1960), 35–45. [18] Kim, A., Brasó, G., Ošep, A., and Leal-Taixé, L. Polarmot: How far can geometric relations take us in 3d multi-object tracking? In European Conference on Computer Vision (ECCV) (2022), pp. 41–58. [19] Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. Multiple hypothesis tracking revisited. In IEEE International Conference on Computer Vision (ICCV) (2015), pp. 4696–4704. [20] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations(ICLR) (2015), Y. Bengio and Y. LeCun, Eds. [21] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (ICLR) (2017). [22] Lan, L., Wang, X., Hua, G., Huang, T. S., and Tao, D. Semi-online multipeople tracking by re-identification. International Journal of Computer Vision(IJCV) (2020), 1937–1955. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. Focal loss for dense object detection. In IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2999–3007. [24] Luna, E., SanMiguel, J. C., Martínez, J. M., and Carballeira, P. Graph neural networks for cross-camera data association. arXiv preprint arXiv:2201.06311 (2022). [25] Nguyen, D. M. H., Henschel, R., Rosenhahn, B., Sonntag, D., and Swoboda, P. LMGP: Lifted multicut meets geometry projections for multi-camera multiobject tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), pp. 8866–8875.38 [26] Ong, J., Vo, B.-T., Vo, B.-N., Kim, D. Y., and Nordholm, S. A bayesian filter for multi-view 3d multi-object tracking with occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI) (2020), 2246–2263. [27] Qian, Y., Yu, L., Liu, W., and Hauptmann, A. G. Electricity: An efficient multi-camera vehicle tracking system for intelligent city. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020). [28] Quach, K. G., Nguyen, P., Le, H., Truong, T.-D., Duong, C. N., Tran, M.-T., and Luu, K. DyGLIP: A dynamic graph model with link prediction for accurate multi-camera multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021), pp. 13784–13793. [29] Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi, C. Performance measures and a data set for multi-target, multi-camera tracking. In Computer Vision – ECCV 2016 Workshops (Cham, 2016), G. Hua and H. Jégou, Eds., Springer International Publishing, pp. 17–35. [30] Sun, S., Akhtar, N., Song, X., Song, H., Mian, A., and Shah, M. Simultaneous detection and tracking with motion modelling for multiple object tracking. In Computer Vision – ECCV 2020 (2020), A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., pp. 626–643. [31] Tang, S., Andres, B., Andriluka, M., and Schiele, B. Subgraph decomposition for multi-target tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). [32] Tang, S., Andres, B., Andriluka, M., and Schiele, B. Multi-person tracking by multicut and deep matching. In Computer Vision – ECCV 2016 Workshops (2016), G. Hua and H. Jégou, Eds., pp. 100–111. [33] Tang, S., Andriluka, M., Andres, B., and Schiele, B. Multiple people tracking by lifted multicut and person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). [34] Tang, Z., Naphade, M., Liu, M.-Y., Yang, X., Birchfield, S., Wang, S., Kumar, R., Anastasiu, D., and Hwang, J.-N. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019). [35] van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. [36] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems (2017), vol. 30, Curran Associates, Inc. 39 [37] Wang, Z., Zheng, L., Liu, Y., Li, Y., and Wang, S. Towards real-time multiobject tracking. In Computer Vision–ECCV 2020 (2020), Springer, pp. 107–122. [38] Wen, L., Lei, Z., Chang, M.-C., Qi, H., and Lyu, S. Multi-camera multi-target tracking with space-time-view hyper-graph. International Journal of Computer Vision(IJCV) (2017), 313–333. [39] Xu, Y., Liu, X., Liu, Y., and Zhu, S.-C. Multi-view people tracking via hierarchical trajectory composition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 4256–4265. [40] Xu, Y., Liu, X., Qin, L., and Zhu, S.-C. Cross-view people tracking by scenecentered spatio-temporal parsing. In Proceedings of the AAAI Conference on Artificial Intelligence(AAAI) (2017). [41] Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixe, L., and Alameda-Pineda, X. How to train your deep multi-object tracker. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020). [42] You, Q., and Jiang, H. Real-time 3d deep multi-camera tracking. arXiv preprint arXiv:2003.11753 (2020). [43] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang, X. Bytetrack: Multi-object tracking by associating every detection box. In Proceedings of the European Conference on Computer Vision (ECCV) (2022). [44] Zhou, K., Yang, Y., Cavallaro, A., and Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019). [45] Zhou, X., Koltun, V., and Krähenbühl, P. Tracking objects as points. In Computer Vision – ECCV 2020 (2020), pp. 474–490. |