|
[1] C.-S. Adam. Deep learning with point clouds, 2019. https://news.mit.edu/2019/deep-learning-point-clouds-1021. [2] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet x.509 public key infrastructure Time-Stamp Protocol (TSP). Technical report, 2001. [3] A. Akbari, M. Trocan, S. Sanei, and B. AGranado. Joint sparse learning with nonlocal and local image priors for image error concealment. IEEE Transactions on Circuits and Systems for Video Technology, 30(8):2559–2574, 2019. [4] M. Al-Jarrah, A. Al-Dweik, E. Alsusa, and E. Damiani. RFID reader localization using hard decisions with error concealment. IEEE Sensors Journal, 19(17):7534– 7542, 2019. [5] C. Anagnostopoulos, C. Koulamas, A. Lalos, and C. Stylios. Open-source integrated simulation framework for cooperative autonomous vehicles. In Proc. of IEEE Conference on Mediterranean Conference on Embedded Computing (MECO), pages 1– 4, 2022. [6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundancy in network traffic: findings and implications. In Proc. of ACM Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pages 37–48, 2009. [7] E. Arnold, M. Dianati, R. Temple, and S. Fallah. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors. IEEE Transactions on Intelligent Transportation Systems, 23(3):1852–1864, 2020. [8] V. Banks, K. Plant, and N. Stanton. Driver error or designer error: Using the perceptual cycle model to explore the circumstances surrounding the fatal Tesla crash on 7th May 2016. Safety Science, 108:278–285, 2018. [9] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences. 57 In Proc. of IEEE/CVF Conference on Computer Vision (ICCV), pages 9296–9306, 2019. [10] Z. Cai, J. Liang, K. Hou, and S. Liu. LiDAR point cloud image interpolation via separable convolution. In Proc. of IEEE Conference on Chinese Control Conference (CCC), pages 6709–6713, 2022. [11] L. Cenkeramaddi, J. Bhatia, A. Jha, S. Vishkarma, and J. Soumya. A survey on sensors for autonomous systems. In Proc. of IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1182–1187, 2020. [12] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu. F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds. In Proc. of ACM/IEEE Symposium on Edge Computing (SEC), pages 88–100, 2019. [13] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception for connected autonomous vehicles based on 3D point clouds. In Proc. of IEEE Conference on Distributed Computing Systems (ICDCS), pages 514–524, 2019. [14] Q. Chen, S. Vora, and O. Beijbom. PolarStream: Streaming LiDAR object detection and segmentation with polar pillars. arXiv preprint arXiv:2106.HZCY+2007545, 2021. [15] S. Chen, J. Hu, Y. Shi, L. Zhao, and W. Li. A vision of C-V2X: Technologies, field testing, and challenges with chinese development. IEEE Internet of Things Journal, 7(5):3872–3881, 2020. [16] X. Chen, S. Shi, B. Zhu, K. Cheung, H. Xu, and H. Li. MPPNet: Multi-frame feature intertwining with proxy points for 3D temporal object detection. In Proc. of European Conference on Computer Vision (ECCV), pages 680–697, 2022. [17] J. Claybrook and S. Kildare. Autonomous vehicles: No driver. . . no regulation?, 2018. https://www.science.org/doi/full/10.1126/science.aau2715. [18] G. Cui, W. Zhang, Y. Xiao, L. Yao, and Z. Fang. Cooperative perception technology of autonomous driving in the internet of vehicles environment: A review. Sensors, 22(15):5535, 2022. [19] J. Cui, H. Qiu, D. Chen, P. Stone, and Y. Zhu. COOPERNAUT: End-to-end driving with cooperative perception for networked vehicles. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 17252–17262, 2022. 58 [20] Q. Delooz and A. Festag. Network load adaptation for collective perception in V2X communications. In Proc. of IEEE Conference on Connected Vehicles and Expo (ICCVE), pages 1–6, 2019. [21] Q. Delooz, R. Riebl, A. Festag, and A. Vinel. Design and performance of congestion-aware collective perception. In Proc. of IEEE Conference on Vehicular Networking (VNC), pages 1–8, 2020. [22] S. Demetriou, P. Jain, and K.-H. Kim. CoDrive: Improving automobile positioning via collaborative driving. In Proc. of IEEE Conference on Computer Communications (INFOCOM), pages 72–80, 2018. [23] E. Dierikx, A. Wallin, T. Fordell, J. Myyry, P. Koponen, M. Merimaa, T. Pinkert, J. Koelemeij, H. Peek, and R. Smets. White rabbit precision time protocol on longdistance fiber links. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(7):945–952, 2016. [24] C. Domke and Q. Potts. LiDARs for self-driving vehicles: a technological arms race, 2020. https://www.automotiveworld.com/articles/lidars-for-self-driving-vehicles-atechnological-arms-race. [25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving simulator. In Proc. of PMLR Conference on Robot Learning (CoRL), pages 1–16, 2017. [26] M. Drago, T. Zugno, M. Polese, M. Giordani, and M. Zorzi. MilliCar: An ns3 module for mmWave NR V2X networks. In Proc. of ACM Workshop on NS-3 (WNS3), pages 9–16, 2020. [27] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981. [28] D. Frossard, S. Suo, S. Casas, J. Tu, R. Hu, and R. Urtasun. StrObe: Streaming object detection from LiDAR packets. arXiv preprint arXiv:2011.06425, 2020. [29] S. Gao, K. Yang, H. Shi, K. Wang, and J. Bai. Review on panoramic imaging and its applications in scene understanding. IEEE Transactions on Instrumentation and Measurement, 71:1–34, 2022. [30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013. 59 [31] C. Glennie. Calibration and kinematic analysis of the velodyne HDL-64E S2 LiDAR sensor. Photogrammetric Engineering & Remote Sensing, 78(4):339–347, 2012. [32] Google. Draco, 2023. https://github.com/google/draco. [33] T. Hackel, N. Savinov, L. Ladicky, J. Wegner, K. Schindler, and M. Pollefeys. Semantic3D.net: A new large-scale point cloud classification benchmark. arXiv preprint arXiv:1704.03847, 2017. [34] W. Han, Z. Zhang, B. Caine, B. Yang, C. Sprunk, O. Alsharif, J. Ngiam, V. Vasudevan, J. Shlens, and Z. Chen. Streaming object detection for 3-D point clouds. In Proc. of European Conference on Computer Vision (ECCV), pages 423–441, 2020. [35] T.-K. Hung, I.-C. Huang, S. Cox, W. Ooi, and C.-H. Hsu. Error concealment of dynamic 3D point cloud streaming. In Proc. of ACM Conference on Multimedia (MM), pages 3134–3142, 2022. [36] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang. Survey on the internet of vehicles: Network architectures and applications. IEEE Communications Standards Magazine, 4(1):34–41, 2020. [37] Y. Jia, R. Mao, Y. Sun, S. Zhou, and Z. Niu. Online V2X scheduling for raw-level cooperative perception. In Proc. of IEEE Conference on Communications (ICC), pages 309–314, 2022. [38] Y. Jiang, H. Qiu, M. McCartney, G. Sukhatme, M. Gruteser, F. Bai, D. Grimm, and R. Govindan. CARLOC: Precise positioning of automobiles. In Proc. of ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 253–265, 2015. [39] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996. [40] J. Kenney. Dedicated Short-Range Communications (DSRC) standards in the united states. Proc. of IEEE, 99(7):1162–1182, 2011. [41] S.-W. Kim, B. Qin, Z. Chong, X. Shen, W. Liu, M. Ang, E. Frazzoli, and D. Rus. Multivehicle cooperative driving using cooperative perception: Design and experimental validation. IEEE Transactions on Intelligent Transportation Systems, 16(2):663–680, 2014. [42] L. Liu, X. Chen, S. Zhu, and P. Tan. CondLaneNet: a top-to-down lane detection framework based on conditional convolution. In Proc. of IEEE/CVF Conference on Computer Vision (ICCV), pages 3773–3782, 2021. 60 [43] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang, J. Li, and F. Huang. Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6489–6498, 2020. [44] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu. Morphing and sampling network for dense point cloud completion. In Proc. of the AAAI Conference on Artificial Intelligence (AAAI), pages 11596–11603, 2020. [45] X. Liu, C. Qi, and L. Guibas. FlowNet3D: Learning scene flow in 3D point clouds. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 529–537, 2019. [46] P. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotter ¨ od, R. Hilbrich, ¨ L. Lucken, J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation ¨ using SUMO. In Proc. of IEEE Conference on Intelligent Transportation Systems (ITSC), pages 2575–2582, 2018. [47] F. Lu, G. Chen, S. Qu, Z. Li, Y. Liu, and A. Knoll. PointINet: Point cloud frame interpolation network. In Proc. of AAAI Conference on Artificial Intelligence (AAAI), pages 2251–2259, 2021. [48] M. Malinverno, F. Raviglione, C. Casetti, C.-F. Chiasserini, J. Mangues-Bafalluy, and M. Requena-Esteso. A multi-stack simulation framework for vehicular applications testing. In Proc. of ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (DIVANet), pages 17–24, 2020. [49] E. Marvasti, A. Raftari, A. Marvasti, and Y. Fallah. Bandwidth-adaptive feature sharing for cooperative LIDAR object detection. In Proc. of IEEE Conference on Connected and Automated Vehicles Symposium (CAVS), pages 1–7, 2020. [50] D. Mills. Internet time synchronization: the network time protocol. IEEE Transactions on Communications, 39(10):1482–1493, 1991. [51] Nsnam. Network Simulator 3 (NS-3), 2023. https://www.nsnam.org/. [52] C. Perkins, O. Hodson, and V. Hardman. A survey of packet loss recovery techniques for streaming audio. IEEE Network, 12(5):40–48, 1998. [53] L. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009. 61 [54] P. Pirri, C. Pahl, N. Ioini, and H. Barzegar. Towards cooperative maneuvering simulation: Tools and architecture. In Proc. of IEEE Conference on Consumer Communications & Networking Conference (CCNC), pages 1–6, 2021. [55] C. Qi, L. Yi, H. Su, and L. Guibas. PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30, 2017. [56] Y. Qian, L. Yu, W. Liu, and A. Hauptmann. ELECTRICITY: An efficient multicamera vehicle tracking system for intelligent city. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 588– 589, 2020. [57] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. AVR: Augmented vehicular reality. In Proc. of ACM Conference on Mobile Systems, Applications, and Services (MobiSys), pages 81–95, 2018. [58] C. Qu, S. Shivakumar, W. Liu, and C. Taylor. LLOL: Low-latency odometry for spinning LiDARs. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 4149–4155, 2022. [59] R. Ravindran, M. Santora, and M. Jamali. Multi-object detection and tracking, based on DNN, for autonomous vehicles: A review. IEEE Sensors Journal, 21(5):5668– 5677, 2020. [60] S. Shi, X. Wang, and H. Li. PointRCNN: 3D object proposal generation and detection from point cloud. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–779, 2019. [61] P. Szikora and N. Madarasz. Self-driving cars—the human side. In ´ Proc. of IEEE Conference on Informatics, pages 383–387, 2017. [62] J. Tang, S. Li, and P. Liu. A review of lane detection methods based on deep learning. Pattern Recognition, 111:107623, 2021. [63] S.-M. Tang, C.-H. Hsu, Z. Tian, and X. Su. An aerodynamic, computer vision, and network simulator for networked drone applications. In Proc. of ACM Conference on Mobile Computing and Networking (MobiCom), page 831–833, 2021. [64] TCITS ETSI. Intelligent transport systems (its); vehicular communications; basic set of applications; part 2: Specification of cooperative awareness basic service. Draft ETSI TS, 20(2011):448–51, 2011. 62 [65] G. Thandavarayan, M. Sepulcre, and J. Gozalvez. Analysis of message generation rules for collective perception in connected and automated driving. In Proc. of IEEE Symposium on Intelligent Vehicles (IV), pages 134–139, 2019. [66] G. Thandavarayan, M. Sepulcre, and J. Gozalvez. Generation of cooperative perception messages for connected and automated vehicles. IEEE Transactions on Vehicular Technology, 69(12):16336–16341, 2020. [67] N. Vanli, M. Sayin, M. Mohaghegh, H. Ozkan, and S. Kozat. Nonlinear regression via incremental decision trees. Pattern Recognition, 86:1–13, 2019. [68] A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment. In Proc. of ICST Conference on Simulation Tools and Techniques (SimuTools), 2010. [69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017. [70] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph attention convolution for point cloud semantic segmentation. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10296–10305, 2019. [71] X. Wen, T. Li, Z. Han, and Y.-S. Liu. Point cloud completion by skip-attention network with hierarchical folding. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1939–1948, 2020. [72] C.-H. Wu, C.-F. Hsu, T.-K. Hung, C. Griwodz, W. Ooi, and C.-H. Hsu. Quantitative comparison of point cloud compression algorithms with PCC Arena. IEEE Transactions on Multimedia, pages 1–16, February 2022. Accepted to Appear. [73] J. Xu, X. Le, C. Chen, and X. Guan. SPINet: self-supervised point cloud frame interpolation network. Springer Neural Computing and Applications, 35(14):9951– 9960, 2023. [74] J. Xu, Z. You, X. Le, C. Chen, and X. Guan. HINet: Hierarchical point cloud frame interpolation network. In Proc. of IEEE Conference on Intelligent Control and Information Processing (ICICIP), pages 334–340, 2021. [75] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma. OpenCDA: an open cooperative driving automation framework integrated with co-simulation. In Proc. of IEEE Conference on Intelligent Transportation Systems Conference (ITSC), pages 1155–1162, 2021. 63 [76] R. Xu, H. Xiang, X. Han, X. Xia, Z. Meng, C.-J. Chen, C. Correa-Jullian, and J. Ma. The OpenCDA open-source ecosystem for cooperative driving automation research. IEEE Transactions on Intelligent Vehicles, 8(4):2698–2711, 2023. [77] J.-R. Xue, J.-W. Fang, and P. Zhang. A survey of scene understanding by event reasoning in autonomous driving. International Journal of Automation and Computing, 15(3):249–266, 2018. [78] X. Yan, H. Yan, J. Wang, H. Du, Z. Wu, D. Xie, S. Pu, and L. Lu. FBNet: Feedback network for point cloud completion. In Proc. of European Conference on Computer Vision (ECCV), pages 676–693, 2022. [79] Y. Yang, C. Feng, Y. Shen, and D. Tian. FoldingNet: Interpretable unsupervised learning on 3D point clouds. arXiv preprint arXiv:1712.07262, 2(3):5, 2017. [80] D. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh. Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6):2140, 2021. [81] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. PoinTr: Diverse point cloud completion with geometry-aware transformers. In Proc. of IEEE/CVF Conference on Computer Vision (ICCV), pages 12498–12507, 2021. [82] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. Guo, F. Qian, and Z. Mao. EMP: edgeassisted multi-vehicle perception. In Proc. of ACM Conference on Mobile Computing and Networking (MobiCom), pages 545–558, 2021. [83] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh. PolarNet: An improved grid representation for online LiDAR point clouds semantic segmentation. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9601–9610, 2020. [84] L. Zhao, X. Lin, W. Wang, K.-K. Ma, and J. Chen. Rangeinet: Fast LiDAR point cloud temporal interpolation. In Proc. of IEEE Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2584–2588, 2022. [85] L. Zhao, Z. Zhu, X. Lin, X. Guo, Q. Yin, W. Wang, and J. Chen. RAI-Net: Rangeadaptive LiDAR point cloud frame interpolation network. In Proc. of IEEE Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pages 1–6, 2021. |