帳號:guest(18.221.255.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游翌銘
作者(外文):You, Yi-Ming
論文名稱(中文):使用正交相移鍵控調變且包含任意用戶數之下行MIMO-NOMA系統的位元錯誤率分析
論文名稱(外文):Bit-Error-Rate Analysis for a Downlink MIMO-NOMA System with an Arbitrary Number of Users and QPSK Modulation
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):鐘嘉德
謝欣霖
黃昱智
口試委員(外文):Chung, Char-Dir
Shieh, Shin-Lin
Huang, Yu-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:110064519
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:36
中文關鍵詞:非正交多重接取多輸入多輸出系統位元錯誤率任意用戶數量非完美通道資訊連續干擾消除
外文關鍵詞:Non Orthogonal Multiple AccessMIMO SystemBit Error RateArbitrary Number of UsersImperfect CSISuccessive Interference Cancellation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們 針對具有任意 針對具有任意 用戶數且採正交相移鍵控 用戶數且採正交相移鍵控 用戶數且採正交相移鍵控 (QPSK)調變的下行多 輸入多出 非正交多重接取 (MIMO-NOMA)系統,進行深入的位元錯誤率( 系統,進行深入的位元錯誤率( 系統,進行深入的位元錯誤率( 系統,進行深入的位元錯誤率( 系統,進行深入的位元錯誤率( 系統,進行深入的位元錯誤率( BER)效能 分析 ;我們 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 的分析別針對完美與不通道狀態資訊情境,且 同時考 量 MIMO-NOMA傳輸所造成的多重接取干擾、 傳輸所造成的多重接取干擾、 連續干擾消除 所產生的錯誤傳播 、傳輸 /接收天線 間的空相關性等因素影響 。首先, 首先, 在使用 傳統 格雷 編碼 的情況下,我們推導出單輸 的情況下,我們推導出單輸 的情況下,我們推導出單輸 入單輸出 (SISO) NOMA系統中個別用戶的一般 系統中個別用戶的一般 BER表示式,然後將之擴展至 表示式,然後將之擴展至 表示式,然後將之擴展至 MIMO情境,其中 情境,其中 情境,其中 每個數據流 可視為 包含多重接取干擾和 連續干擾消除 效應的一條 SISO鏈路; 鏈路; 基於 類似 的分析方法 ,我們進一步推導出在使用 聯合 格雷 編碼 情況 下之 MIMO-NOMA系統 的 BER表示式。電腦模擬 式。電腦模擬 式。電腦模擬 結果 證實 ,所 推導出的 BER表示式在各種考量的情況下 都具有 高度準確性 ,而 通道相關性和估 測誤差 則會導致明顯的 BER效能衰退 。
In this thesis, we perform a comprehensive analysis of the bit-error-rate (BER) performance for a downlink multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) system with an arbitrary number of users and quadrature phase shift keying modulation. The multiple access interference (MAI) from MIMO-NOMA transmission, error propagation due to successive interference cancellation (SIC), and spatial correlation among transmit/receive antennas are considered under both perfect and imperfect channel state information scenarios. Initially, general BER expressions are derived for individual users in a single-input single-output (SISO) NOMA system with conventional Gray coding (GC). These are then extended to a MIMO scenario with conventional GC by treating each data stream as a separate SISO link with additional MAI and SIC effects. Similar BER expressions are further derived for a MIMO-NOMA system with joint GC. Extensive computer simulations demonstrate that the derived BER expressions have high accuracy for various considered cases. It is also observed that both channel correlation and channel estimation errors would cause a significant degradation on the BER performance.
Abstract
Contents
List of Figures
List of Tables
I. Introduction 1
II. System Model 4
A. Channel Model 4
B. Signal Model 5
III. BER Analysis for SISO-NOMA Systems under Conventional Gray Coding 8
A. BER Expressions for a Three-User SISO-NOMA System under Perfect CSI 8
B. BER Expressions for a SISO-NOMA System with an Arbitrary Number of Users under Perfect CSI 12
C. BER Expressions for a SISO-NOMA System with an Arbitrary Number of Users under Imperfect CSI 13
IV. BER Analysis for MIMO-NOMA Systems under Conventional Gray Coding 15
V. BER Analysis for SISO/MIMO-NOMA Systems under Joint Gray Coding 19
VI. Simulation Results 21
A. Simulation Arrangements 21
B. Validation of the Analytical BER Expressions 22
C. Impacts of Channel Correlation and Channel Estimation Errors 22
VII. Conclusions 33
References 34
[1] B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of NOMA: Current status and open research challenges,” IEEE Open J. Commun. Soc., vol. 1, pp. 179–189, Feb. 2020.
[2] I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M. J. Piran, and D. Y. Suh, “A systematic review on NOMA variants for 5G and beyond,” IEEE Access, vol. 9, pp. 85573–85644, Jun. 2021.
[3] Y. Liu, S. Zhang, X. Mu, and Z. Ding, “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037–1071, Apr. 2022.
[4] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Okinawa, Japan, Nov. 2013, pp. 770–774.
[5] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp.1501–1505, Dec. 2014.
[6] Q. Sun, S. Han, C. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.
[7] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal multiple access,” IEEE Trans. Wireless. Commn., vol. 15, no. 1, pp. 537–552, Jan. 2016.
[8] I. H. Lee and J. B. Kim, “Average symbol error rate analysis for nonorthogonal multiple access with M-ary QAM signals in Rayleigh fading channels,” IEEE Commun. Lett., vol. 23, no. 8, pp. 1328–1331, Aug. 2019.
[9] Q. He, Y. Hu, and A. Schmeink, “Closed-form symbol error rate expressions for non-orthogonal multiple access systems,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6775–6789, Jul. 2019.
[10] Y. Wang, J. Wang, D. W. K. Ng, R. Schober, and X. Gao, “A minimum error probability NOMA design,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4221–4237, Jul. 2021.
[11] T. Assaf, A. Al-Dweik, M. E. Moursi, H. Zeineldin, and M. Al-Jarrah, “Exact bit error-rate analysis of two-user NOMA using QAM with arbitrary modulation orders,” IEEE Commun. Lett., vol. 24, no. 12, pp. 2705–2709, Dec. 2020.
[12] T. Assaf, A. Al-Dweik, M. E. Moursi, and H. Zeineldin, “Exact BER performance analysis for downlink NOMA systems over Nakagami-m fading channels,” IEEE Access, vol. 7, pp. 134539–134555, Sep. 2019.
[13] T. Assaf, A. Al-Dweik, M. E. Moursi, H. Zeineldin, and M. Al-Jarrah, “NOMA receiver design for delay-sensitive systems,” IEEE Syst. J., vol. 15, no. 4, pp. 5606–5617, Dec. 2021.
[14] W. Han, X. Ma, D. Tang, and N. Zhao, “Study of SER and BER in NOMA systems,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3325–3340, Apr. 2021.
[15] M. Aldababsa, C. Göztepe, G. K. Kurt, and O. Kucur, “Bit error rate for NOMA network,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1188–1191, Jun. 2020.
[16] H. Yahya, E. Alsusa, and A. Al-Dweik, “Exact BER analysis of NOMA with arbitrary number of users and modulation orders,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6330–6344, Sep. 2021.
[17] Y.-C. Ding, “Bit-error-rate analysis and power allocation for a MIMO-NOMA system using QPSK modulation and linear minimum mean-squared error detection,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Jul. 2022.
[18] C. N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 637–650, Mar. 2002.
[19] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation matrix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371, Sep. 2001.
[20] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[21] M. Ding and S. D. Blostein, “MIMO minimum total MSE transceiver design with imperfect CSI at both ends,” IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1141–1150, Oct. 2009.
[22] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser detection,” IEEE Trans. Inf. Theory, vol. 43, pp. 858–871, May 1997.
[23] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, Jul. 1999.
[24] K. B. Petersen and M. S. Petersen. (2012, Nov. 15). The Matrix Cookbook [Online]. Available: https://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
[25] J. G. Proakis, Digital Communications, 4th ed. New York, NY, USA: McGraw-Hill, 2001.
[26] 3GPP R1-152974, Potential transmission schemes for MUST, ZTE, TSG-RAN WG1 #81, May 2015.
[27] S.-L. Shieh, C.-H. Lin, Y.-C. Huang, and C.-L. Wang, “On gray labeling for downlink non-orthogonal multiple access without SIC,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1721–1724, Sep. 2016.
[28] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154–1164, Jul. 2004.
[29] G. Strang, Introduction to Linear Algebra, int. ed. Wellesley, MA, USA: Wellesley-Cambridge Press, 2019.
[30] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *