|
[1] J. W. Judy, "Microelectromechanical systems (MEMS): fabrication, design and applications," Smart materials and Structures, vol. 10, no. 6, p. 1115, 2001. [2] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proceedings of the IEEE, vol. 86, no. 8, pp. 1552-1574, 1998. [3] S. Katzir, "The discovery of the piezoelectric effect," in The Beginnings of Piezoelectricity: A Study in Mundane Physics: Springer, 2006, pp. 15-64. [4] D. L. Devoe and A. P. Pisano, "Surface micromachined piezoelectric accelerometers (PiXLs)," Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 180-186, 2001. [5] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, "Single-and triaxis piezoelectric-bimorph accelerometers," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008. [6] S. Aoyagi, S. Kumagai, D. Yoshikawa, and Y. Isono, "Surface micromachined accelerometer using ferroelectric substrate," Sensors and Actuators A: Physical, vol. 139, no. 1-2, pp. 88-94, 2007. [7] B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, "Design of a piezoelectric accelerometer with high sensitivity and low transverse effect," Sensors, vol. 16, no. 10, p. 1587, 2016. [8] C. C. Hindrichsen, J. Larsen, E. Thomsen, K. Hansen, and R. Lou-Møller, "Circular piezoelectric accelerometer for high band width application," in SENSORS, 2009 IEEE, 2009: IEEE, pp. 475-478. [9] Y.-H. Wang, P. Song, X. Li, C. Ru, G. Ferrari, P. Balasubramanian, M. Amabili, Y. Sun, and X. Liu, "A paper-based piezoelectric accelerometer," Micromachines, vol. 9, no. 1, p. 19, 2018. [10] G. T. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk micromachining of silicon," Proceedings of the IEEE, vol. 86, no. 8, pp. 1536-1551, 1998. [11] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, "Precision accelerometers with μg resolution," Sensors and Actuators A: Physical, vol. 21, no. 1-3, pp. 297-302, 1990. [12] W. Kuehnel and S. Sherman, "A surface micromachined silicon accelerometer with on-chip detection circuitry," Sensors and Actuators A: Physical, vol. 45, no. 1, pp. 7-16, 1994. [13] S.-H. Tseng, M. S. Lu, P.-C. Wu, Y.-C. Teng, H.-H. Tsai, and Y.-Z. Juang, "Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process," Journal of Micromechanics and Microengineering, vol. 22, no. 5, p. 055010, 2012. [14] T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.-C. Chiou, and W. Fang, "Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design," in SENSORS, 2011 IEEE, 2011: IEEE, pp. 145-148. [15] J. Wu, G. K. Fedder, and L. R. Carley, "A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers," in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 02CH37315), 2002, vol. 1: IEEE, pp. 428-478. [16] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, "Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors," Journal of Micromechanics and Microengineering, vol. 19, no. 10, p. 105017, 2009. [17] S. Tan, C. Liu, L. Yeh, Y. Chiu, and K. Y. Hsu, "A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability," Journal of Micromechanics and Microengineering, vol. 21, no. 3, p. 035005, 2011. [18] L. E. Hollander, G. L. Vick, and T. Diesel, "The piezoresistive effect and its applications," Review of Scientific Instruments, vol. 31, no. 3, pp. 323-327, 1960. [19] L. M. Roylance and J. B. Angell, "A batch-fabricated silicon accelerometer," IEEE Transactions on Electron Devices, vol. 26, no. 12, pp. 1911-1917, 1979. [20] J. Sim, D. Kim, Y. Bae, K. Nam, and J. Lee, "Six-beam piezoresistive accelerometer with self-cancelling cross-axis sensitivity," Electronics Letters, vol. 34, no. 5, pp. 497-499, 1998. [21] E. J. Eklund and A. M. Shkel, "Single-mask SOI fabrication process for linear and angular piezoresistive accelerometers with on-chip reference resistors," in SENSORS, 2005 IEEE, 2005: IEEE, p. 4 pp. [22] A. R. Sankar, J. G. Jency, J. Ashwini, and S. Das, "Realisation of silicon piezoresistive accelerometer with proof mass-edge-aligned-flexures using wet anisotropic etching," Micro & Nano Letters, vol. 7, no. 2, pp. 118-121, 2012. [23] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, "A high-performance planar piezoresistive accelerometer," Journal of microelectromechanical systems, vol. 9, no. 1, pp. 58-66, 2000. [24] H. Takao, Y. Matsumoto, and M. Ishida, "Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers," Sensors and Actuators A: Physical, vol. 65, no. 1, pp. 61-68, 1998. [25] H. Takao, H. Fukumoto, and M. Ishida, "A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining," IEEE Transactions on Electron Devices, vol. 48, no. 9, pp. 1961-1968, 2001. [26] Z.-K. Wang, D.-G. Zong, D.-R. Lu, B. Xiong, Y.-L. Wang, and M. Bao, "A micromachined piezoresistive high-g accelerometer with high sensitivity and wide frequency-band: Design and modeling," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 3, no. 3-4, pp. 307-310, 2002. [27] X. Li, L. Gu, Y. Wang, and H. Yang, "Single-Wafer-Processed Self-Testable High-$ g $ Accelerometers With Both Sensing and Actuating Elements Integrated on Trench-Sidewall," IEEE Sensors Journal, vol. 8, no. 12, pp. 1992-1999, 2008. [28] Y. Shi, X. Wen, Y. Zhao, R. Zhao, H. Cao, and J. Liu, "Investigation and experiment of high shock packaging technology for High-G MEMS accelerometer," IEEE Sensors Journal, vol. 20, no. 16, pp. 9029-9037, 2020. [29] A. R. Atwell, R. S. Okojie, K. T. Kornegay, S. L. Roberson, and A. Beliveau, "Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers," Sensors and Actuators A: Physical, vol. 104, no. 1, pp. 11-18, 2003. [30] Y. Shi, Y. Zhao, H. Feng, H. Cao, J. Tang, J. Li, R. Zhao, and J. Liu, "Design, fabrication and calibration of a high-G MEMS accelerometer," Sensors and Actuators A: Physical, vol. 279, pp. 733-742, 2018. [31] Y. Chiu, T.-C. Huang, and H.-C. Hong, "A three-axis single-proof-mass CMOS-MEMS piezoresistive accelerometer with frequency output," Sens. Mater, vol. 26, no. 2, pp. 95-108, 2014. [32] A. Chaehoi, D. O’Connell, D. Weiland, R. Adamson, S. Bruckshaw, S. Ray, M. Begbie, and J. Bruce, "Monolithic CMOS MEMS technology development: A piezoresistive-sensors case study," Proceedings of the NSTI-Nanotech, Anaheim, CA, USA, pp. 21-25, 2010. [33] M. H. M. Khir, P. Qu, and H. Qu, "A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass," Sensors, vol. 11, no. 8, pp. 7892-7907, 2011. [34] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and M. Pascal, "Micromachined accelerometer with no proof mass," in International Electron Devices Meeting. IEDM Technical Digest, 1997: IEEE, pp. 899-902. [35] R. Mukherjee, P. Mandal, and P. K. Guha, "Sensitivity improvement of a dual axis thermal accelerometer with modified cavity structure," Microsystem Technologies, vol. 23, pp. 5357-5363, 2017. [36] F. Mailly, H. B. Nguyen, L. Latorre, and P. Nouet, "CMOS implementation of a 3-axis thermal convective accelerometer," in SENSORS, 2014 IEEE, 2014: IEEE, pp. 1471-1474. [37] S.-J. Chen and C.-H. Shen, "A novel two-axis CMOS accelerometer based on thermal convection," IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 8, pp. 1572-1577, 2008. [38] H. B. Nguyen, F. Mailly, L. Latorre, and P. Nouet, "A new monolithic 3-axis thermal convective accelerometer: principle, design, fabrication and characterization," Microsystem Technologies, vol. 21, pp. 1867-1877, 2015. [39] A. Petropoulos, A. Moschos, S. Athineos, and G. Kaltsas, "A thermal accelerometer directly integrated on organic substrate," Procedia Engineering, vol. 25, pp. 643-646, 2011. [40] T. Tsuchiya, A. Inoue, and J. Sakata, "Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films," Sensors and Actuators A: Physical, vol. 82, no. 1-3, pp. 286-290, 2000. [41] K. Kwon and S. Park, "Three axis piezoresistive accelerometer using polysilicon layer," in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), 1997, vol. 2: IEEE, pp. 1221-1224. [42] A. R. Sankar, J. G. Jency, and S. Das, "Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures," Microsystem technologies, vol. 18, pp. 9-23, 2012. [43] S. Kal, S. Das, D. K. Maurya, K. Biswas, A. R. Sankar, and S. Lahiri, "CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity," Microelectronics Journal, vol. 37, no. 1, pp. 22-30, 2006.
|