帳號:guest(3.15.192.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭則翰
作者(外文):Peng, Che-Han
論文名稱(中文):CMOS 單軸壓阻式微加速度計之開發
論文名稱(外文):Development of a CMOS Single-Axis Piezoresistive Accelerometer
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):方維倫
鄭裕庭
口試委員(外文):Fang, Wei-Leun
Cheng, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:110063557
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:88
中文關鍵詞:微機電低成本CMOS 整合壓阻感測加速度計
外文關鍵詞:MEMSLow CostCMOS IntegratedPiezoresistive SensingAccelerometer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文設計了一個CMOS整合式單軸壓阻式加速度計,使用多晶矽作為壓阻,並且在符合Design Rule以及後製程需求的前提下盡可能降低懸臂樑的厚度以及寬度,從而使懸臂樑接收更大應力以增加感測度。並且在後製程的步驟中皆是使用濕蝕刻,能夠降低成本及複雜度。同時,CMOS整合可以帶來降低成本以及整合感測電路等優點,在結構尺寸縮小的同時保障高感測度。結構的尺寸上也測試了三種不同的質量塊尺寸,可對應至不同的應用場合。
本研究使用TSMC 0.35μm two-polysilicon-four-metal (2P4M) CMOS標準製程,晶片的大小為2.41 mm × 2.41 mm,經過一系列的後製程,實現單軸壓阻式加速度計,以達成與CMOS標準製程的高整合。三種結構主要是質量塊的尺寸不同,分別為200 μm × 200 μm、150 μm × 150 μm、100 μm × 100 μm。經過量測,共振頻率分別為2260 Hz、4015 Hz、8125 Hz。感測度分別為317.72 μV/g/V、96.71 μV/g/V、38.57 μV/g/V。溫度對於感測度的變化分別為-2.604 μV/g/V/ºC、-0.659 μV/g/V/ºC、-0.299 μV/g/V/ºC。加速度的解析度分別為18.125 mg、42.999 mg、117.46 mg。
This paper designs a CMOS integrated uniaxial piezoresistive accelerometer, using polysilicon as the piezoresistor. The thickness and width of the cantilever beam are minimized as much as possible in compliance with the Design Rule and post-processing requirements. This allows the cantilever beam to receive greater stress and enhances sensitivity. All the steps in the post-processing use wet etching, which can reduce cost and complexity. Simultaneously, CMOS integration brings advantages such as cost reduction and integrated sensing circuitry, ensuring high sensitivity while minimizing structural dimensions. Our study also tests three different mass block sizes, which can correspond to different application scenarios.
This study uses the TSMC 0.35μm two-polysilicon-four-metal (2P4M) CMOS standard process, and the size of the chip is 2.41 mm × 2.41 mm. After a series of post-processing steps, a single-axis piezoresistive accelerometer is realized, achieving high integration with the CMOS standard process. The three structures mainly differ in the size of the mass blocks, which are respectively 200 μm × 200 μm, 150 μm × 150 μm, and 100 μm × 100 μm. After measurement, the resonant frequencies are respectively 2260 Hz, 4015 Hz, and 8125 Hz. The sensitivities are respectively 317.72 μV/g/V, 96.71 μV/g/V, and 38.57 μV/g/V. The temperature changes with respect to sensitivity are respectively -2.604 μV/g/V/ºC, -0.659 μV/g/V/ºC, and -0.299 μV/g/V/ºC. The resolution of acceleration is respectively 18.125 mg, 42.999 mg, and 117.46 mg.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 微加速度計的發展及應用 2
1-3 文獻回顧 2
1-3-1 壓電式加速度計 3
1-3-2 電容式加速度計 3
1-3-3 壓阻式加速度計 4
1-3-4 熱感應式加速度計 4
1-4 研究動機 6
第二章 加速度計設計與模擬 7
2-1 加速度計感測架構 7
2-2 加速度計結構設計 9
2-3 感測器結構模擬 14
2-3-1 共振模態模擬 14
2-3-2 懸臂樑應力及位移模擬 19
2-3-3 壓阻阻值變化模擬 23
2-4 感測器電路模擬 27
2-5 感測度推算 31
第三章 加速度計實現及後製程 33
3-1 佈局考量 33
3-2 後製程施作 40
3-3 電路板設計 47
第四章 量測結果與討論 49
4-1 結構量測 49
4-1-1 三維微觀量測 49
4-1-2 結構振頻量測 53
4-2 電路量測 56
4-3 加速度量測 59
4-3-1 感測度量測 60
4-3-2 溫度對感測度影響之量測 66
4-4 噪聲量測 73
4-4-1 頻譜噪聲量測 73
4-4-2 Allan方差量測 77
第五章 結論與未來 80
5-1 研究成果 80
5-2 未來工作 82
參考文獻 83
[1] J. W. Judy, "Microelectromechanical systems (MEMS): fabrication, design and applications," Smart materials and Structures, vol. 10, no. 6, p. 1115, 2001.
[2] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proceedings of the IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
[3] S. Katzir, "The discovery of the piezoelectric effect," in The Beginnings of Piezoelectricity: A Study in Mundane Physics: Springer, 2006, pp. 15-64.
[4] D. L. Devoe and A. P. Pisano, "Surface micromachined piezoelectric accelerometers (PiXLs)," Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 180-186, 2001.
[5] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, "Single-and triaxis piezoelectric-bimorph accelerometers," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008.
[6] S. Aoyagi, S. Kumagai, D. Yoshikawa, and Y. Isono, "Surface micromachined accelerometer using ferroelectric substrate," Sensors and Actuators A: Physical, vol. 139, no. 1-2, pp. 88-94, 2007.
[7] B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, "Design of a piezoelectric accelerometer with high sensitivity and low transverse effect," Sensors, vol. 16, no. 10, p. 1587, 2016.
[8] C. C. Hindrichsen, J. Larsen, E. Thomsen, K. Hansen, and R. Lou-Møller, "Circular piezoelectric accelerometer for high band width application," in SENSORS, 2009 IEEE, 2009: IEEE, pp. 475-478.
[9] Y.-H. Wang, P. Song, X. Li, C. Ru, G. Ferrari, P. Balasubramanian, M. Amabili, Y. Sun, and X. Liu, "A paper-based piezoelectric accelerometer," Micromachines, vol. 9, no. 1, p. 19, 2018.
[10] G. T. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk micromachining of silicon," Proceedings of the IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
[11] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, "Precision accelerometers with μg resolution," Sensors and Actuators A: Physical, vol. 21, no. 1-3, pp. 297-302, 1990.
[12] W. Kuehnel and S. Sherman, "A surface micromachined silicon accelerometer with on-chip detection circuitry," Sensors and Actuators A: Physical, vol. 45, no. 1, pp. 7-16, 1994.
[13] S.-H. Tseng, M. S. Lu, P.-C. Wu, Y.-C. Teng, H.-H. Tsai, and Y.-Z. Juang, "Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process," Journal of Micromechanics and Microengineering, vol. 22, no. 5, p. 055010, 2012.
[14] T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.-C. Chiou, and W. Fang, "Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design," in SENSORS, 2011 IEEE, 2011: IEEE, pp. 145-148.
[15] J. Wu, G. K. Fedder, and L. R. Carley, "A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers," in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 02CH37315), 2002, vol. 1: IEEE, pp. 428-478.
[16] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, "Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors," Journal of Micromechanics and Microengineering, vol. 19, no. 10, p. 105017, 2009.
[17] S. Tan, C. Liu, L. Yeh, Y. Chiu, and K. Y. Hsu, "A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability," Journal of Micromechanics and Microengineering, vol. 21, no. 3, p. 035005, 2011.
[18] L. E. Hollander, G. L. Vick, and T. Diesel, "The piezoresistive effect and its applications," Review of Scientific Instruments, vol. 31, no. 3, pp. 323-327, 1960.
[19] L. M. Roylance and J. B. Angell, "A batch-fabricated silicon accelerometer," IEEE Transactions on Electron Devices, vol. 26, no. 12, pp. 1911-1917, 1979.
[20] J. Sim, D. Kim, Y. Bae, K. Nam, and J. Lee, "Six-beam piezoresistive accelerometer with self-cancelling cross-axis sensitivity," Electronics Letters, vol. 34, no. 5, pp. 497-499, 1998.
[21] E. J. Eklund and A. M. Shkel, "Single-mask SOI fabrication process for linear and angular piezoresistive accelerometers with on-chip reference resistors," in SENSORS, 2005 IEEE, 2005: IEEE, p. 4 pp.
[22] A. R. Sankar, J. G. Jency, J. Ashwini, and S. Das, "Realisation of silicon piezoresistive accelerometer with proof mass-edge-aligned-flexures using wet anisotropic etching," Micro & Nano Letters, vol. 7, no. 2, pp. 118-121, 2012.
[23] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, "A high-performance planar piezoresistive accelerometer," Journal of microelectromechanical systems, vol. 9, no. 1, pp. 58-66, 2000.
[24] H. Takao, Y. Matsumoto, and M. Ishida, "Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers," Sensors and Actuators A: Physical, vol. 65, no. 1, pp. 61-68, 1998.
[25] H. Takao, H. Fukumoto, and M. Ishida, "A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining," IEEE Transactions on Electron Devices, vol. 48, no. 9, pp. 1961-1968, 2001.
[26] Z.-K. Wang, D.-G. Zong, D.-R. Lu, B. Xiong, Y.-L. Wang, and M. Bao, "A micromachined piezoresistive high-g accelerometer with high sensitivity and wide frequency-band: Design and modeling," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 3, no. 3-4, pp. 307-310, 2002.
[27] X. Li, L. Gu, Y. Wang, and H. Yang, "Single-Wafer-Processed Self-Testable High-$ g $ Accelerometers With Both Sensing and Actuating Elements Integrated on Trench-Sidewall," IEEE Sensors Journal, vol. 8, no. 12, pp. 1992-1999, 2008.
[28] Y. Shi, X. Wen, Y. Zhao, R. Zhao, H. Cao, and J. Liu, "Investigation and experiment of high shock packaging technology for High-G MEMS accelerometer," IEEE Sensors Journal, vol. 20, no. 16, pp. 9029-9037, 2020.
[29] A. R. Atwell, R. S. Okojie, K. T. Kornegay, S. L. Roberson, and A. Beliveau, "Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers," Sensors and Actuators A: Physical, vol. 104, no. 1, pp. 11-18, 2003.
[30] Y. Shi, Y. Zhao, H. Feng, H. Cao, J. Tang, J. Li, R. Zhao, and J. Liu, "Design, fabrication and calibration of a high-G MEMS accelerometer," Sensors and Actuators A: Physical, vol. 279, pp. 733-742, 2018.
[31] Y. Chiu, T.-C. Huang, and H.-C. Hong, "A three-axis single-proof-mass CMOS-MEMS piezoresistive accelerometer with frequency output," Sens. Mater, vol. 26, no. 2, pp. 95-108, 2014.
[32] A. Chaehoi, D. O’Connell, D. Weiland, R. Adamson, S. Bruckshaw, S. Ray, M. Begbie, and J. Bruce, "Monolithic CMOS MEMS technology development: A piezoresistive-sensors case study," Proceedings of the NSTI-Nanotech, Anaheim, CA, USA, pp. 21-25, 2010.
[33] M. H. M. Khir, P. Qu, and H. Qu, "A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass," Sensors, vol. 11, no. 8, pp. 7892-7907, 2011.
[34] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and M. Pascal, "Micromachined accelerometer with no proof mass," in International Electron Devices Meeting. IEDM Technical Digest, 1997: IEEE, pp. 899-902.
[35] R. Mukherjee, P. Mandal, and P. K. Guha, "Sensitivity improvement of a dual axis thermal accelerometer with modified cavity structure," Microsystem Technologies, vol. 23, pp. 5357-5363, 2017.
[36] F. Mailly, H. B. Nguyen, L. Latorre, and P. Nouet, "CMOS implementation of a 3-axis thermal convective accelerometer," in SENSORS, 2014 IEEE, 2014: IEEE, pp. 1471-1474.
[37] S.-J. Chen and C.-H. Shen, "A novel two-axis CMOS accelerometer based on thermal convection," IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 8, pp. 1572-1577, 2008.
[38] H. B. Nguyen, F. Mailly, L. Latorre, and P. Nouet, "A new monolithic 3-axis thermal convective accelerometer: principle, design, fabrication and characterization," Microsystem Technologies, vol. 21, pp. 1867-1877, 2015.
[39] A. Petropoulos, A. Moschos, S. Athineos, and G. Kaltsas, "A thermal accelerometer directly integrated on organic substrate," Procedia Engineering, vol. 25, pp. 643-646, 2011.
[40] T. Tsuchiya, A. Inoue, and J. Sakata, "Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films," Sensors and Actuators A: Physical, vol. 82, no. 1-3, pp. 286-290, 2000.
[41] K. Kwon and S. Park, "Three axis piezoresistive accelerometer using polysilicon layer," in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), 1997, vol. 2: IEEE, pp. 1221-1224.
[42] A. R. Sankar, J. G. Jency, and S. Das, "Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures," Microsystem technologies, vol. 18, pp. 9-23, 2012.
[43] S. Kal, S. Das, D. K. Maurya, K. Biswas, A. R. Sankar, and S. Lahiri, "CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity," Microelectronics Journal, vol. 37, no. 1, pp. 22-30, 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *