帳號:guest(18.117.73.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉晏承
作者(外文):Liu, Yan-Cheng
論文名稱(中文):CMOS電容式微型懸臂樑紅外線感測器之開發
論文名稱(外文):Development of CMOS Capacitive Microcantilever Infrared Sensors
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):方維倫
鄭裕庭
口試委員(外文):Fang, Wei-Leun
Cheng, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:110063548
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:75
中文關鍵詞:紅外線電容式雙層材料
外文關鍵詞:CMOSInfraredCapacitiveBimorph
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以標準CMOS製程製作了一個紅外線焦平面熱感測陣列,並以電容式雙層材料懸臂樑作為感熱元件,其感測原理為利用感熱結構將吸收紅外線熱輻射所產生之溫度變化轉換為電容變化。有別於其他常見的紅外線熱感測器,本研究期望在感熱結構製作上省去了額外的沉積,做出一個高響應度高偵測度的感測陣列,以此驗證電容式雙層材料懸臂樑作為感熱元件的高度發展性。
本研究使用 TSMC 2P4M 0.35 μm 製程,製作了16 × 16紅外線感測器陣列,透過讀取電路的設計將電容受到熱輻射所產生的溫度變化轉換為輸出電壓。在結構方面利用金屬濕蝕刻、反應離子蝕刻定義了感熱元件結構形狀。經量測後得到電容溫度係數為1.66%/K,感測器的熱時間常數6.4 ms,而響應度與雜訊等效功率(NEP)則分別為1.4 × 106 V/W以及1.57 pW/Hz1/2。
In this study, an infrared focal plane array was fabricated with a standard CMOS process, and the capacitive bimorph cantilevers were used as sensing elements. The sensing principle relies on converting the temperature variation generated by absorbing infrared radiation into a change in capacitance. Distinguished from other common infrared sensors, this research aims to eliminate additional deposition in fabrication of the thermal sensing structure and achieve a high responsivity and detection for the sensing array. This serves to validate the high development potential of the capacitive bimorph cantilver as a thermal sensing element.
In this study, the TSMC 2P4M 0.35 μm process was used to fabricate an 16 × 16 infrared sensors array. The variation in capacitance with temperature by infrared radiation was converted into output voltage through a readout circuit. In terms of structure, the shape of the thermal sensing element was defined using metal wet etching and reactive ion etching. The measured temperature coefficient of capacitance (TCC) is 1.66%/K. The thermal time constanct is 6.4ms, and responsivity and noise equivalent power (NEP) can respectively reach 1.4 × 106 V/W and 1.57 pW/Hz1/2 .
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
(一) 紅外線熱感測簡介 2
(二) 感測機制簡介 3
1-2 文獻回顧 4
(一) 熱阻式感測器 4
(二) 熱電式感測器 5
(三) 焦電式感測器 6
(四) 電晶體式感測器 6
(五) 電容式感測器 7
1-3 研究動機 8
第二章 電容式雙層材料懸臂樑熱感測原理 10
2-1 感測原理 10
(一) 熱輻射原理 10
(二) 感測原理 11
2-2 規格參數 12
(一) 響應度 12
(二) 雜訊等校溫差 12
(三) 電容溫度係數 13
(四) 偵測度 13
(五) 熱時間常數 13
第三章 設計與模擬 16
3-1 元件設計 16
(一) 感測電容參數設計 16
(二) 結構與佈局設計 18
(三) 後製程步驟 22
3-2 元件模擬 26
(一) 溫度感測模擬 26
(二) 結構振頻模擬 29
(三) 熱時間常數模擬 30
(四) 材料吸收率模擬 31
3-3 電路設計 33
(一) 整體電路架構 33
(二) 讀取電路 37
(三) 取樣保持電路 39
(四) 移位暫存器 40
3-4 電路模擬 42
第四章 實驗結果與分析 45
4-1 結構特性量測 45
(一) 光學顯微鏡量測 45
(二) 白光干涉儀量測 47
4-2 電路量測 50
(一) 量測設備架構 50
(二) 結構振頻量測 52
(三) 溫度變化量測 53
(四) 紅外線量測 58
(五) 熱時間常數量測 63
(六) 壓力變化量測 65
(七) 噪聲量測 66
第五章 結論與未來工作 68
5-1 研究結果討論 68
5-2 未來工作 70
(一) 元件佈局設計改良 70
(二) 電路改良 70
參考文獻 71

[1] H. K. Xie, and G. K. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS Gyroscope,” IEEE Sensors J., vol. 3, no. 5, pp. 622-631, Oct, 2003.
[2] M. H. Tsai, Y. C. Liu, and W. L. Fang, “A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes,” J. of Microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Dec, 2012.
[3] J. J. Neumann, and K. J. Gabriel, “A fully-integrated CMOS-MEMS audio microphone,” Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, pp. 230-233, 2003.
[4] N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei, and K. Machida, “Novel surface structure and its fabrication process for MEMS fingerprint sensor,” IEEE Trans. on Elec. Dev., vol. 52, no. 5, pp. 1026-1032, May, 2005.
[5] H. H. Tsai, C. F. Lin, Y. Z. Juang, I. L. Wang, Y. C. Lin, R. L. Wang, and H. Y. Lin, “Multiple type biosensors fabricated using the CMOS BioMEMS platform,” Sensors and Actuators B-Chemical, vol. 144, no. 2, pp. 407-412, Feb 17, 2010.
[6] M. Kimata, “Uncooled infrared focal plane arrays,” IEEJ Trans. on Electrical and Electronic Engineering, vol. 13, no. 1, pp. 4-12, Jan, 2018.
[7] F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays - A review,” MEMS/MOEMS Technologies and Applications Iii, vol. 6836, 2008.
[8] T. Ishikawa, M. Ueno, K. Endo, Y. Nakaki, H. Hata, T. Sone, and M. Kimata, “Low-cost 320 × 240 uncooled IRFPA using conventional silicon IC process,” Proc. of SPIE., vol. 3698, pp. 556-564, Jul,1999.
[9] N. Shen, Z. Tang, J. Yu, and Z. Huang, “A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process,” J. of Semiconductors., 2014, 35, 034014.
[10] M. V. Mansi, M. Brookfield, S. G. Porter, I. Edwards, B. Bold, J. Shannon, P. Lambkin, and A. Mathewson, “AUTHENTIC:A very low-cost infrared detector and camera system,” Proc. of SPIE., vol. 4820, pp. 227–238 Jul. 2002.
[11] X. Cao, M. Luo, W. Si, F. Yan, and X. Ji, "Design of microbolometer by polycrystalline silicon in standard CMOS technology," In Proceedings of the China Semiconductor Technology International Conference, Shanghai, China, pp. 18–19 Mar. 2019.
[12] Y. H. Han, I. H. Choi, H. K. Kang, J. Y. Park, K. T. Kim, H. J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, no. 1-2, pp. 260-264, Feb 3, 2003.
[13] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sensors and Actuators a-Physical, vol. 109, no. 1-2, pp. 102-113, Dec 1, 2003.
[14] F. Haenschke, E. Kessler, U. Dillner, A. Ihring, U. Schinkel, and H. G. Meyer, “A new high detectivity room temperature linear thermopile array with a D* greater than 2 x 109 cmHz1/2/W based on organic membranes,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 19, no. 12, pp. 1927-1933, Dec, 2013.
[15] H. C. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, “Cmos-based thermopiles using vertically integrated double polycrystalline silicon layers,” 26th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2013), pp. 429-432, 2013.
[16] G. Milde, C. Hausler, G. Gerlach, H. A. Bahr, and H. Balke, “3-D modeling of pyroelectric sensor arrays part II: modulation transfer function,” IEEE Sensors J., vol. 8, no. 11-12, pp. 2088-2094, Nov-Dec, 2008.
[17] J. Yun, and S. S. Lee, “Human movement detection and identification using pyroelectric infrared sensors,” Sensors, vol. 14, no. 5, pp. 8057-8081, May, 2014.
[18] T. D. Binnie, H. J. Weller, Z. Q. He, and D. Setiadi, “An integrated 16 x 16 PVDF pyroelectric sensor array,” IEEE Trans. on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, no. 6, pp. 1413-1420, Nov, 2000.
[19] L. Dong, R. F. Yue, and L. T. Liu, “Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements,” J. of Microelectromech. Syst., vol. 14, no. 5, pp. 1167-1177, Oct, 2005.
[20] A. Zviagintsev, T. Blank, I. Brouk, S. Bar-Lev, S. Stolyarova, A. Svetlitza, I. Bloom, A. Nemirovsky, and Y. Nemirovsky, “Micro-machined CMOS-SOI transistor (TMOS) thermal sensor operating in air,” 2017 IEEE Int. Conf. on Microwaves, Antennas, Communications and Electronic Systems (Comcas), pp. 350-353, 2017.
[21] T. Blank, I. Brouk, S. Bar-Lev, G. Amar, E. Meimoun, S. Bouscher, M. Meltsin, M. Vaiana, A. Maierna, M. E. Castagna, G. Bruno, and Y. Nemirovsky, “Non-imaging digital CMOS-SOI-MEMS uncooled passive infra-red sensing systems,” IEEE Sensors J., vol. 21, no. 3, pp. 3660-3668, Feb 1, 2021.
[22] L. Gitelman, S. Stolyarova, S. Bar-Lev, Z. Gutman, Y. Ochana, and Y. Nemirovsky, “CMOS-SOI-MEMS transistor for uncooled IR imaging,” IEEE Trans. on Elec. Dev., vol. 56, no. 9, pp. 1935-1942, Sep, 2009.
[23] A. Zviagintsev, T. Blank, I. Brouk, I. Bloom, and Y. Nemirovsky, “Modeling the performance of nano machined CMOS transistors for uncooled IR sensing,” IEEE Trans. on Elec. Dev., vol. 64, no. 11, pp. 4657-4663, Nov, 2017.
[24] E. Socher, S. M. Beer, and Y. Nemirovsky, “Temperature sensitivity of SOI-CMOS transistors for use in uncooled thermal sensing,” IEEE Trans. on Elec. Dev., vol. 52, no. 12, pp. 2784-2790, Dec, 2005.
[25] T. Saraf, I. Brouk, S. B. L. Shefi, A. Unikovsky, T. Blank, P. K. Radhakrishnan, and Y. Nemirovsky, “CMOS-SOI-MEMS uncooled infrared security sensor with integrated readout,” IEEE J. of the Elec. Dev. Soc., vol. 4, no. 3, pp. 155-162, May, 2016.
[26] S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. S. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High sensitivity uncooled microcantilever infrared imaging arrays,” Proc. of SPIE., vol. 5074, pp. 469–480. Oct. 2003.
[27] S. R. Hunter, G. S. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. of SPIE., vol. 6542, pp. 1-13. May. 2007.
[28] S. R. Hunter, G. S. Maurer, G. Simelgor, S. Radhakrishnan, J. Gray, K. Bachir, T. Pennell, M. Bauer, U, Jagadish, “Development and optimization of microcantilever based IR imaging arrays,” Proc. of SPIE., vol. 6940, pp. 1-12. Apr. 2008.
[29] U. Adiyan, F. Civitci, O. Ferhanoğlu, H. Torun, H. Urey, “A 35-μm Pitch IR Thermo-Mechanical MEMS Sensor With AC-Coupled Optical Readout, ” IEEE J. Sel. Top. Quantum Electron., vol. 21, no 4, July, 2015.
[30] Y. Zhao,M. Mao,R. Horowitz,A. Majumdar,J. Varesi,P. Norton, J. Kitching, “Optomechanical uncooled infrared imaging system:design, microfabrication, and performance,” J. of Microelectromech. Syst., vol. 11, no. 2, pp. 136–146, Apr. 2002
[31] M. F. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermo-mechanical detector array: Design, fabrication and testing,” Sens. Actuators A, Phys., vol. 156, no. 1, pp. 88–94, Nov. 2009.
[32] P. G. Datskos, P. L. Oden, T. Thundat, E. A. Wachter , R. J. Warmack, S. R. Hunter, “Development and optimization of microcantilever based IR imaging arrays,” Appl. Phys. Lett., no. 69, pp. 2986-2988. Nov. 1996.
[33] H. Jerominek, M. Renaud, N. R. Swart, F. Picard, T. D. Pope, M. Levesque, M. Lehoux, G. Bilodeau, M. Pelletier, D. Audet, and P. Lambert, “Micromachined VO2-based uncooled IR bolometric detector arrays with integrated CMOS readout electronics,” Micromachined Dev. and Components Ii, vol. 2882, pp. 111-121, 1996.
[34] C. Minassian, J. L. Tissot, M. Vilain, O. Legras, S. Tinnes, B. Fieque, J. M. Chiappa, and P. Robert, “Uncooled amorphous silicon TEC-less 1/4 VGA IRFPA with 25 pixel-pitch for high volume applications,” Infrared Technology and Applications Xxxiv, Pts 1 and 2, vol. 6940, 2008.
[35] T. W. Shen, K. C. Chang, C. M. Sun, and W. L. Fang, “Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design,” J. of Micromech. and Microeng., vol. 29, no. 2, Feb, 2019.
[36] H. Jerominek, M. Renaud, N. R. Swart, F. Picard, T. D. Pope, M. Levesque, M. Lehoux, G. Bilodeau, M. Pelletier, D. Audet, and P. Lambert, “Micromachined VO2-based uncooled IR bolometric detector arrays with integrated CMOS readout electronics,” Micromachined Dev. and Components Ii, vol. 2882, pp. 111-121, 1996.
[37] F. Tankut, M. H. Cologlu, H. Askar, H. Ozturk, H. K. Dumanli, F. Oruc, B. Tilkioglu, B. Ugur, O. S. Akar, M. Tepegoz, and T. Akin, “An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology,” Infrared Technology and Applications Xliii, vol. 10177, 2017.
[38] X. J. Xue, H. Xiong, Z. Song, Y. X. Du, D. Wu, L. Y. Pan, and Z. Y. Wang, “Silicon diode uncooled FPA with three-dimensional integrated CMOS readout circuits,” IEEE Sensors J., vol. 19, no. 2, pp. 426-434, Jan 15, 2019.
[39] D. S. Tezcan, S. Eminoglu, and T. Akin, “A low-cost uncooled infrared microbolometer detector in standard CMOS technology,” IEEE Trans. on Elec. Dev., vol. 50, no. 2, pp. 494-502, Feb, 2003.
[40] I. W. Kwon, J. E. Kim, C. H. Hwang, T. S. Kim, Y. S. Lee, H. C. Lee, “A high fill-factor uncooled infrared detector with thermomechanical bimaterial structure,” Proc. of SPIE., vol. 6542, 2007.
[41] W. Wang, V. Upadhyay, C. Munoz, J. Bumgarner, and O. Edwards, “FEA simulation, design and fabrication of uncooled MEMS capacitive thermal detector for infrared FPA imaging,” Proc. of SPIE., vol. 6206, 2006.
[42] G. Siebke, K. Gerngroß, P. Holik, S. Schmitz, M. Rohloff, S. Tätzner, and S. Steltenkamp, “An uncooled capacitive sensor for IR detection,” Proc. of SPIE., vol. 9070, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *