帳號:guest(3.144.34.110)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉承翰
作者(外文):Yeh, Cheng-Han
論文名稱(中文):具平均電壓回授與溫度補償之低週期抖動時脈產生器
論文名稱(外文):A Low Period Jitter CMOS Relaxation Oscillator with Voltage Averaging Feedback and Temperature Compensation
指導教授(中文):徐永珍
指導教授(外文):Klaus, Yung-Jane Hsu
口試委員(中文):劉堂傑
賴宇紳
口試委員(外文):Liu, Tang-Jie
Lai, Yu-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:110063514
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:86
中文關鍵詞:振盪器溫度補償低週期抖動
外文關鍵詞:OscillatorTemperature CompensationLow Period Jitter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今的電子產品中,任何具有時序控制的電路,例如手機、相機、電腦等,都必須依賴時脈訊號來確保正確運作。因此,如何生成一個高度精確且穩定的時脈訊號成為一個重大的課題。迄今為止,大多數電子設備仍然依賴石英振盪器產生時脈訊號,這主要是因為石英振盪器提供了目前最高的頻率穩定性,然而,石英晶體作為振盪器的基本元件,有大面積、高成本、高消耗功率,以及無法與CMOS製成做整合等的缺點,因此過去幾十年來各界學者都試圖尋找能替代石英振盪器的方案,以追求更好的時脈訊號生成技術。
近年來被提出取代石英振盪的方法有MEMS振盪器、FBAR振盪器,及CMOS振盪器。但是,MEMS與FBAR的製程技術困難,無法與CMOS電路整合;而CMOS振盪器因半導體特性易受環境影響,導致其振盪頻率會因工作溫度與供應電壓的變動而改變。也因此,到目前為止石英振盪器還無法完全被取代。不過,CMOS電路在設計上可加上適當的補償方式將穩定度提高,因此我們致力於CMOS振盪器,以標準製程下實現低功率消耗、具溫度補償的時脈產生器。
因此本次研究致力於在TSMC 90nm 1P9M 標準製程下在CMOS電路設計上製作一個高效率且穩定的時脈產生器,使其振盪頻率可以不受溫度還有電壓的變異所影響。此外,透過只有一組充放電路徑可以有效地降低週期抖動(Period Jitter),並且加入一個除頻器以達到輸出訊號為接近50%責任週期(Duty Cycle)的方波。
In today's electronic products, any circuit with timing control, such as mobile phones, cameras, computers, etc, must rely on clock signals to ensure correct operation. Therefore, how to generate a highly accurate and stable clock signal has become a significant issue. So far, most electronic devices still rely on quartz oscillators to generate clock signals. This is mainly because quartz oscillators provide the highest frequency stability currently. However, quartz crystals, as the essential components of oscillators, have large areas and high costs. Therefore, in the past few decades, scholars from all walks of life have tried to find alternatives to quartz oscillators in pursuit of better clock signal generation technology.
In recent years, MEMS oscillators, FBAR oscillators, and CMOS oscillators have been proposed to replace quartz oscillators. However, the process technology of MEMS and FBAR is complicated and cannot integrate with CMOS circuits. Due to the characteristics of semiconductors, CMOS oscillators are easily affected by the environment, causing their oscillation frequency to change due to changes in operating temperature and supply voltage. Therefore, quartz oscillators can only partially be replaced so far. However, appropriate compensation methods can be added to the design of CMOS circuits to improve stability. Therefore, we are committed to CMOS oscillators to achieve low power consumption and temperature-compensated clock generators under standard manufacturing processes.
Therefore, this research is dedicated to creating a high-efficiency and stable clock generator based on CMOS circuit design under the TSMC 90nm 1P9M standard process so that its oscillation frequency will not be affected by temperature and voltage variations. In addition, period jitter can be effectively reduced by having only one set of charge and discharge paths, and a frequency divider is added to achieve a square wave output signal close to 50% of the duty cycle.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文章節架構 6
第二章 CMOS振盪器 7
2.1 CMOS振盪器介紹 7
2.1.1弛張振盪器(Relaxation Oscillator) 7
2.1.2諧波振盪器(Harmonic Oscillator) 8
2.2 頻率變異來源 10
第三章 文獻回顧 14
3.1 平均電壓值回授(VOLTAGE AVERAGING FEEDBACK) 14
3.2 電阻的串並聯或並串聯組合 18
3.3 具溫度補償的弛張振盪電路 22
第四章 電路架構 23
4.1 電路架構概述 23
4.2 雜訊分析 24
4.3 子電路 26
4.3.1 平均電壓值回授(Voltage Averaging Feedback) 26
4.3.2 運算放大器(Operational Amplifier) 28
4.3.3 比較器(Comparator) 29
4.3.4 緩衝電路(Buffer) 31
4.3.5 固定轉導偏壓電路(Constant-Gm Biasing) 31
4.3.6 充放電路徑(RC Path) 34
4.3.7 Control Buffer 36
4.3.8 Delay Buffer 37
4.3.9 除頻器(Frequency Divider) 38
4.3.10 Buffer Chain 40
4.4 振盪頻率 41
第五章 模擬與佈局 42
5.1 子電路模擬結果 42
5.1.1運算放大器(Operational Amplifier) 42
5.1.2比較器(Comparator) 44
5.1.3緩衝電路(Buffer) 46
5.1.4固定轉導偏壓電路(Constant-Gm Biasing) 47
5.1.5充放電路徑(RC Path) 50
5.1.6 Control Buffer 52
5.1.7 Delay Buffer 53
5.1.8 除頻器(Frequency Divider) 54
5.2 整體電路模擬結果 55
5.2.1 振盪器波形 55
5.2.2 穩定時間 57
5.2.3 週期抖動(Period Jitter) 58
5.2.4 工作週期(Duty Cycle) 59
5.2.5 頻率受溫度的影響 60
5.2.6 頻率受供應電壓的影響 62
5.3 晶片布局 63
第六章 量測結果 66
6.1 PCB板的設計與環境架設 66
6.2 量測儀器介紹 68
6.3 量測方法 69
6.4 量測結果 70
6.4.1 振盪器輸出波形 71
6.4.2 頻率受供應電壓的影響 73
6.4.3 頻率受溫度的影響 74
6.4.4 週期抖動受溫度的影響 75
6.4.5 量測結果彙整 76
6.5問題討論 77
第七章 結論與未來研究方向 80
7.1 結論 80
7.2 後續研究建議 80
參考文獻 83
附錄 量測資料 86

[1] 林志遠, “電子產品當中不可或缺的時脈元件”
[2] D. Peumans, A. Cooman and G. Vandersteen, "Analysis of Phase-Locked Loops using the Best Linear Approximation," 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lisbon, Portugal, 2016, pp. 1-4, doi: 10.1109/SMACD.2016.7520652.
[3] Crystal oscillator frequencies, wikipedia。網址:https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies
[4] 林妤珊, “一個具有精準責任週期的參考振盪器” , 國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零二年七月
[5] Maxim Integrated產品介紹。網址:http://para.maximintegrated.com/en/search.mvp?fam=osc_mod&980=XO
[6] Maxim Integrated產品介紹。網址:http://para.maximintegrated.com/en/search.mvp?fam=siliosc&774=No
[7] S. Vanchinathan, "The timing is right for crystal-free oscillators to replace quartz. 網址:https://ja.idt.com/document/atc/timing-right-crystalfree-oscillators-replace-quartz-uk," Electronics Components World.
[8] K. Iniewski, "Advanced circuits for emerging technologies," pp. 207-238, 2012. America:Wiley.
[9] C. Tsai, W. Li, P. Chen, Y. Lin and S. Chang, "On-chip reference oscillators with process, supply voltage and temperature compensation," 2010 International Symposium on Next Generation Electronics, 2010, pp. 108-111.


[10] N. Weste and D. Harris, "CMOS VLSI design: A circuits and systems perspective," vol. 3rd Edition, pp. 231-235, May 2004. New York: Addison Wesley.
[11] B. Razavi, Design of analog CMOS integrated circuits. America: McGraw-Hill, 2001, pp. 361-367, pp. 392, pp. 599
[12] K. Sandaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433–442, Feb. 2006.
[13] Y. H. Chiang, and S. I. Liu, “A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation,” IEEE Tran. Circuits Syst. II, Exp. Briefs, vol. 60, no. 12, pp. 837–841, Dec. 2013.
[14] G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutrì, “A low-voltage low-power voltage reference based on subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 151–154, Jan. 2003.
[15] B. R. Gregoire and U.-K. Moon, “Process-independent resistor temperature-coefficients using series/parallel and parallel/series composite resistors,” in Proc. ISCAS, May 2007, pp. 2826–2829.
[16] H.-M. Chuang, K.-B. Thei, S.-F. Tsai, and W.-C. Liu, “Temperature-dependent characteristics of polysilicon and diffused resistors,” IEEE Trans. Electron Devices, vol. 50, no.5, pp. 1413-1415, May 2003.
[17] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
[18] Z. Xu, W. Wang, N. Ning, W.-M. Lim, Y. Liu, and Q. Yu, “A supply voltage and temperature variation-tolerant relaxation oscillator for biomedical systems based on dynamic threshold and switched resistors,” IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 23, no.4, pp. 786-790, April 2015.
[19] R. Jacob Baker, “CMOS Circuit Design, Layout, and Simulation”, 3th ed, John Wiley & Sons, Inc. 2010.
[20] 高詩婷, "具高度抗溫變性之CMOS參考頻率生成電路," 國立清華大學,碩士論文, 中華民國一百零八年一月.
[21] 麥宏州, ''一個精準且穩定的時脈產生器,” 國立清華大學,碩士論文, 中華民國一百一十年八月.
[22] A. Paidimarri, D. Griffith, A. Wang, G. Burra and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1866-1877, Aug. 2016.
[23] Y.-K. Tsai and L.-H. Lu, “A 51.3-MHz 21.8-ppm/◦C CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 5, pp. 490–494, May 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *